543681-05-6Relevant articles and documents
Amides in one pot from Carboxylic Acids and Amines via Sulfinylamides
Bai, Jianfei,Zambron, Bartosz K.,Vogel, Pierre
supporting information, p. 604 - 607 (2014/04/03)
An efficient method has been developed for the direct amidification of carboxylic acids via sulfinylamides preformed in situ by the reaction of pure amines with prop-2- ene-1-sulfinyl chloride. The method can be applied to aliphatic acids, including pivalic acid, aromatic acids, and primary and secondary amines. It is compatible with acids bearing unprotected alcohol, phenol, and ketone moieties and applicable to the synthesis of peptides. It does not induce their a-epimerization.
Increased enantioselectivity in the addition of diethylzinc to benzaldehyde by the use of chiral ligands containing the α-phenylethylamino group in combination with achiral ligands
Munoz-Muniz, Omar,Juaristi, Eusebio
, p. 3781 - 3785 (2007/10/03)
Chiral ligands (S,S)-1, (S,S)-2, (S,S)-3, (S)-4, (S)-5, (S,S)-6, (S,S)-7, and (S,S)-8 turned out to be effective promoters in the enantioselective addition of diethylzinc to benzaldehyde. Interestingly, diamine (S,S)-3 and amino alcohols (S)-5 and (S,S)-7 induce the preferential formation of carbinol (R)-10 (unlike stereoinduction) whereas amido analogues (S,S)-2, (S)-4, and (S,S)-6 favor (S)-10 (like stereoinduction). Molecular modeling at the semiempirical PM3 level provided a reasonable interpretation based on conformational effects in the corresponding transition structures. Combinations of chiral ligands 1-8 with an achiral, flexible ligand (9) gave rise to an activated catalytic system that resulted in faster and higher yielding reactions. Furthermore, substantial increases in the observed enantiomeric excesses of product 10 confirmed the relevant role of achiral bis-(sulfonamide) 9 as activator and "chiral environment amplifier".
Enantioselective alkylation and protonation of prochiral enolates in the asymmetric synthesis of β-amino acids
Mu?oz-Mu?iz, Omar,Juaristi, Eusebio
, p. 4223 - 4229 (2007/10/03)
Achiral 1-benzoyl-3-methylperhydropyrimidin-4-one (1) was deemed a useful, potential precursor for the enantioselective synthesis of α-substituted β-amino acids. Pyrimidinone 1 was prepared from inexpensive β-aminopropanoic acid in 62% overall yield. Prochiral enolate derivative 1 -Li was alkylated in good yield and moderate enantioselectivity in the presence of chiral amines (S)-8, (S,S)-9, (S,S)-10, or (-)-sparteine. The enantioselectivity of the alkylation process is highest in toluene as the solvent and in the presence of lithium bromide as additive. The racemic alkylated derivatives 2 and 3 were readily metallated with LDA to give prochiral enolates 2-Li and 3-Li, that were reprotonated with novel chiral phenolic acids (S)-11, (S,S)-12, (S)-13, and (S,S)-14 in moderate enantioselectivity in the case of 2-Li and good enantioselectivity in the case of 3-Li. The acid (6N HCl) hydrolysis of enantioenriched 2 and 3 proceeded in good yield and without racemization to afford α-alkyl-β-amino acids 4 and 5, respectively.