57486-67-6Relevant articles and documents
Insertion of Diazo Esters into C-F Bonds toward Diastereoselective One-Carbon Elongation of Benzylic Fluorides: Unprecedented BF3Catalysis with C-F Bond Cleavage and Re-formation
Wang, Fei,Nishimoto, Yoshihiro,Yasuda, Makoto
supporting information, p. 20616 - 20621 (2021/11/23)
Selective transformation of C-F bonds remains a significant goal in organic chemistry, but C-F insertion of a one-carbon-atom unit has never been established. Herein we report the BF3-catalyzed formal insertion of diazo esters as one-carbon-atom sources into C-F bonds to accomplish one-carbon elongation of benzylic fluorides. A DFT calculation study revealed that the BF3 catalyst could contribute to both C-F bond cleavage and re-formation. This elongation provided α-fluoro-α,β-diaryl esters with a high level of diastereoselectivity. Various benzylic fluorides and diazo esters were applicable. The synthetic utility of this method was demonstrated by the synthesis of a fluoro analogue of a compound that is used as a transient receptor and potential canonical channel inhibitor.
PYRAZOLOTRIAZOLOPYRIMIDINE DERIVATIVES AS A2A RECEPTOR ANTAGONIST
-
Paragraph 0699-0701, (2020/02/16)
Disclosed herein is a pyrazolotriazolopyrimidine derivative or a stereoisomer thereof, or a pharmaceutically acceptable salt thereof useful as A2A receptor antagonist, and a pharmaceutical composition comprising the same. Also disclosed herein is a method of treating cancer using the pyrazolotriazolopyrimidine derivative or a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as A2A receptor antagonist.
Pd-Catalyzed Decarboxylative Olefination: Stereoselective Synthesis of Polysubstituted Butadienes and Macrocyclic P-glycoprotein Inhibitors
Chen, Xiangyang,Hao, Jiping,Houk, K. N.,Li, Yingzi,Lou, Liguang,Quan, Haitian,Song, Bichao,Wang, Lu,Xia, Yuanzhi,Xie, Peipei,Xu, Zhongliang,Yang, Weibo
supporting information, p. 9982 - 9992 (2020/06/27)
The efficient and stereoselective synthesis of polysubstituted butadienes, especially the multifunctional butadienes, represents a great challenge in organic synthesis. Herein, we wish to report a distinctive Pd(0) carbene-initiated decarboxylative olefination approach that enables the direct coupling of diazo esters with vinylethylene carbonates (VECs), vinyl oxazolidinones, or vinyl benzoxazinones to afford alcohol-, amine-, or aniline-containing 1,3-dienes in moderate to high yields and with excellent stereoselectivity. This protocol features operational simplicity, mild reaction conditions, a broad substrate scope, and gram-scalability. Notably, a structurally unique allylic Pd(II) intermediate was isolated and characterized. DFT calculation and control experiments demonstrated that a rare Pd(0) carbene intermediate could be involved in this reaction. Moreover, the polysubstituted butadienes as novel building blocks were unprecedentedly assembled into macrocycles, which efficiently inhibited the P-glycoprotein and dramatically reversed multidrug resistance in cancer cells by 190-fold.
ARYL-SUBSTITUTED ACETAMIDE AND PYRROLIDIN-2-ONE DERIVATIVES AND THEIR USE FOR THE TREATMENT OF SEIZURES
-
Paragraph 0068; 0069, (2019/06/09)
Aryl-substituted acetamide and pyrrolidin-2-one (γ-butyrolactam) derivatives have useful activity in the inhibition, prevention, or treatment of seizures. The derivatives may be useful in the treatment of epilepsy, including medically refractory epilepsy, and nerve agent poisoning.
Synthesis and bio-evaluation of natural butenolides-acrylate conjugates
Bao, Longzhu,Wang, Shuangshuang,Song, Di,Wang, Jingjing,Cao, Xiufang,Ke, Shaoyong
, (2019/04/05)
A series of novel 3-aryl-4-hydroxy-2(5H) furanone-acrylate hybrids were designed and synthesized based on the natural butenolides and acrylates scaffolds. The structures of the prepared compounds were characterized by 1H-NMR, 13C-NMR and electrospray ionization mass spectrometry (ESI-MS), and the bioactivity of the target compounds against twelve phytopathogenic fungi was investigated. The preliminary in vitro antifungal activity screening showed that most of the target compounds had moderate inhibition on various pathogenic fungi at the concentration of 100 mg·L?1, and presented broad-spectrum antifungal activities. Further studies also indicated that compounds 7e and 7k still showed some inhibitory activity against Pestallozzia theae, Sclerotinia sclerotiorum and Gibberella zeae on rape plants at lower concentrations, which could be optimized as a secondary lead for further research.
Dehydroxymethylation of alcohols enabled by cerium photocatalysis
Zhang, Kaining,Chang, Liang,An, Qing,Wang, Xin,Zuo, Zhiwei
supporting information, p. 10556 - 10564 (2019/08/20)
Dehydroxymethylation, the direct conversion of alcohol feedstocks as alkyl synthons containing one less carbon atom, is an unconventional and underexplored strategy to exploit the ubiquity and robustness of alcohol materials. Under mild and redox-neutral reaction conditions, utilizing inexpensive cerium catalyst, the photocatalytic dehydroxymethylation platform has been furnished. Enabled by ligand-to-metal charge transfer catalysis, an alcohol functionality has been reliably transferred into nucleophilic radicals with the loss of one molecule of formaldehyde. Intriguingly, we found that the dehydroxymethylation process can be significantly promoted by the cerium catalyst, and the stabilization effect of the fragmented radicals also plays a significant role. This operationally simple protocol has enabled the direct utilization of primary alcohols as unconventional alkyl nucleophiles for radical-mediated 1,4-conjugate additions with Michael acceptors. A broad range of alcohols, from simple ethanol to complex nucleosides and steroids, have been successfully applied to this fragment coupling transformation. Furthermore, the modularity of this catalytic system has been demonstrated in diversified radical-mediated transformations including hydrogenation, amination, alkenylation, and oxidation.
Dehydroxymethylation of Alcohols Enabled by Cerium Photocatalysis
Zhang, Kaining,Chang, Liang,An, Qing,Wang, Xin,Zuo, Zhiwei
supporting information, p. 10556 - 10564 (2019/08/28)
Dehydroxymethylation, the direct conversion of alcohol feedstocks as alkyl synthons containing one less carbon atom, is an unconventional and underexplored strategy to exploit the ubiquity and robustness of alcohol materials. Under mild and redox-neutral reaction conditions, utilizing inexpensive cerium catalyst, the photocatalytic dehydroxymethylation platform has been furnished. Enabled by ligand-to-metal charge transfer catalysis, an alcohol functionality has been reliably transferred into nucleophilic radicals with the loss of one molecule of formaldehyde. Intriguingly, we found that the dehydroxymethylation process can be significantly promoted by the cerium catalyst, and the stabilization effect of the fragmented radicals also plays a significant role. This operationally simple protocol has enabled the direct utilization of primary alcohols as unconventional alkyl nucleophiles for radical-mediated 1,4-conjugate additions with Michael acceptors. A broad range of alcohols, from simple ethanol to complex nucleosides and steroids, have been successfully applied to this fragment coupling transformation. Furthermore, the modularity of this catalytic system has been demonstrated in diversified radical-mediated transformations including hydrogenation, amination, alkenylation, and oxidation.
Palladium-Catalyzed Tandem Reaction of Three Aryl Iodides Involving Triple C-H Activation
Luo, Xiai,Xu, Yankun,Xiao, Genhua,Liu, Wenjuan,Qian, Cheng,Deng, Guobo,Song, Jianxin,Liang, Yun,Yang, Chunming
supporting information, p. 2997 - 3000 (2018/05/28)
A novel palladium-catalyzed tandem reaction of N-(2-iodoaryl)acrylamides with two aryl iodides for the synthesis of spirooxindole has been achieved. The reaction underwent the process of triple C-H activation and four C-C bond formations based on the double trapping of transient spirocyclic palladacycles which are obtained through remote C-H activation.
Stereoselective synthesis of 3,4-di-substituted mercaptolactones via photoredox-catalyzed radical addition of thiophenols
Kouser, Farzana,Sharma, Vijay Kumar,Rizvi, Masood,Sultan, Shaista,Chalotra, Neha,Gupta, Vivek K.,Nandi, Utpal,Shah, Bhahwal Ali
supporting information, p. 2161 - 2166 (2018/05/05)
A visible light mediated radical addition of thiophenols on 4-phenylbut-3-enoic acids to give diastereoselective synthesis of 3,4-disubstituted γ-lactones is reported. The reaction precludes the conventional prerequisite of conjugate addition. Furthermore, the lactones were successfully utilized in the synthesis of γ-ketoamides.
HETEROCYCLIC COMPOUNDS
-
Page/Page column 91, (2018/07/29)
The present invention relates to compounds of the general formula (1) wherein the variables are defined as given in the description and claims. The invention further relates to uses of and to, processes and intermediates related to compounds of the general formula (I), wherein Q is wherein the substituents of I, Ia and Ib are as defined in description and claims.