Welcome to LookChem.com Sign In|Join Free

CAS

  • or

59528-30-2

Post Buying Request

59528-30-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

59528-30-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 59528-30-2 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,9,5,2 and 8 respectively; the second part has 2 digits, 3 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 59528-30:
(7*5)+(6*9)+(5*5)+(4*2)+(3*8)+(2*3)+(1*0)=152
152 % 10 = 2
So 59528-30-2 is a valid CAS Registry Number.

59528-30-2Downstream Products

59528-30-2Relevant articles and documents

Metal-Free Synthesis of Heteroaryl Amines or Their Hydrochlorides via an External-Base-Free and Solvent-Free C-N Coupling Protocol

Fan, Guang-Gao,Jiang, Bo-Wen,Sang, Wei,Cheng, Hua,Zhang, Rui,Yu, Bao-Yi,Yuan, Ye,Chen, Cheng,Verpoort, Francis

, p. 14627 - 14639 (2021/11/01)

Herein, a metal-free and solvent-free protocol was developed for the C-N coupling of heteroaryl halides and amines, which afforded numerous heteroaryl amines or their hydrochlorides without any external base. Further investigations elucidated that the basicity of amines and specific interactions derived from the X-ray crystallography analysis of 3j′·HCl played pivotal roles in the reactions. Moreover, this protocol was scalable to gram scales and applicable to drug molecules, which demonstrated its practical value for further applications.

Benzimidazole fragment containing Mn-complex catalyzed hydrosilylation of ketones and nitriles

Ganguli, Kasturi,Mandal, Adarsha,Sarkar, Bidisha,Kundu, Sabuj

, (2020/08/13)

The synthesis of a new bidentate (NN)–Mn(I) complex is reported and its catalytic activity towards the reduction of ketones and nitriles is studied. On comparing the reactivity of various other Mn(I) complexes supported by benzimidazole ligand, it was observed that the Mn(I) complexes bearing 6-methylpyridine and benzimidazole fragments exhibited the highest catalytic activity towards monohydrosilylation of ketones and dihydrosilylation of nitriles. Using this protocol, a wide range of ketones were selectively reduced to the corresponding silyl ethers. In case of unsaturated ketones, the chemoselective reduction of carbonyl group over olefinic bonds was observed. Additionally, selective dihydrosilylation of several nitriles were also achieved using this complex. Mechanistic investigations with radical scavengers suggested the involvement of radical species during the catalytic reaction. Stoichiometric reaction of the Mn(I) complex with phenylsilane revealed the formation of a new Mn(I) complex.

Catalytic Reduction of Nitriles by Polymethylhydrosiloxane Using a Phenalenyl-Based Iron(III) Complex

Das, Shyamal,Das, Hari Sankar,Singh, Bhagat,Haridasan, Rahul Koottanil,Das, Arpan,Mandal, Swadhin K.

supporting information, p. 11274 - 11278 (2019/09/10)

The reduction of nitriles to primary amines using an inexpensive silane such as polymethylhydrosiloxane (PMHS) is an industrially important reaction. Herein we report the synthesis of an earth-abundant Fe(III) complex bearing a phenalenyl-based ligand that was characterized by mass spectroscopy, elemental analysis, cyclic voltammetry, and single-crystal X-ray diffraction. The complex showed excellent catalytic activity toward reduction of aromatic, heteroaromatic, aliphatic, and sterically crowded nitriles to produce primary amines using polymethylhydrosiloxane (PMHS).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 59528-30-2