Welcome to LookChem.com Sign In|Join Free

CAS

  • or

606-87-1

Post Buying Request

606-87-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

606-87-1 Usage

Synthesis Reference(s)

Tetrahedron Letters, 24, p. 5907, 1983 DOI: 10.1016/S0040-4039(00)94235-7

Check Digit Verification of cas no

The CAS Registry Mumber 606-87-1 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,0 and 6 respectively; the second part has 2 digits, 8 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 606-87:
(5*6)+(4*0)+(3*6)+(2*8)+(1*7)=71
71 % 10 = 1
So 606-87-1 is a valid CAS Registry Number.
InChI:InChI=1/C19H17N/c1-4-10-17(11-5-1)16-20(18-12-6-2-7-13-18)19-14-8-3-9-15-19/h1-15H,16H2

606-87-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name N-benzyl-N-phenylaniline

1.2 Other means of identification

Product number -
Other names diphenylbenzylamine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:606-87-1 SDS

606-87-1Relevant articles and documents

Hydroborative reduction of amides to amines mediated by La(CH2C6H4NMe2-: O)3

Gong, Mingliang,Guo, Chenjun,Luo, Yunjie,Xie, Hongzhen,Zhang, Fangcao

, p. 779 - 791 (2022/01/22)

The deoxygenative reduction of amides to amines is a great challenge for resonance-stabilized carboxamide moieties, although this synthetic strategy is an attractive approach to access the corresponding amines. La(CH2C6H4NMe2-o)3, a simple and easily accessible lanthanide complex, was found to be highly efficient not only for secondary and tertiary amide reduction, but also for the most challenging primary reduction with pinacolborane. This protocol exhibited good tolerance for many functional groups and heteroatoms, and could be applied to gram-scale synthesis. The active species in this catalytic cycle was likely a lanthanide hydride.

Transition-Metal-Free and Base-Promoted Carbon-Heteroatom Bond Formation via C-N Cleavage of Benzyl Ammonium Salts

Liu, Long,Tang, Yuanyuan,Wang, Kunyu,Huang, Tianzeng,Chen, Tieqiao

, p. 4159 - 4170 (2021/03/09)

A facile and general method for constructing carbon-heteroatom (C-P, C-O, C-S, and C-N) bonds via C-N cleavage of benzyl ammonium salts under transition-metal-free conditions was reported. The combination of t-BuOK and 18-crown-6 enabled a wide range of substituted benzyl ammonium salts to couple readily with different kinds of heteroatom nucleophiles, i.e. hydrogen phosphoryl compounds, alcohols, thiols, and amines. Good functional group tolerance was demonstrated. The scale-up reaction and one-pot synthesis were also successfully performed.

Regioselective Synthesis of 2° Amides Using Visible-Light-Induced Photoredox-Catalyzed Nonaqueous Oxidative C-N Cleavage of N, N-Dibenzylanilines

Neerathilingam, Nalladhambi,Bhargava Reddy, Mandapati,Anandhan, Ramasamy

supporting information, p. 15117 - 15127 (2021/10/25)

A visible-light-driven photoredox-catalyzed nonaqueous oxidative C-N cleavage of N,N-dibenzylanilines to 2° amides is reported. Further, we have applied this protocol on 2-(dibenzylamino)benzamide to afford quinazolinones with (NH4)2S2O8 as an additive. Mechanistic studies imply that the reaction might undergo in situ generation of α-amino radical to imine by C-N bond cleavage followed by the addition of superoxide ion to form amides.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 606-87-1