Welcome to LookChem.com Sign In|Join Free

CAS

  • or

61019-26-9

Post Buying Request

61019-26-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

61019-26-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 61019-26-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,1,0,1 and 9 respectively; the second part has 2 digits, 2 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 61019-26:
(7*6)+(6*1)+(5*0)+(4*1)+(3*9)+(2*2)+(1*6)=89
89 % 10 = 9
So 61019-26-9 is a valid CAS Registry Number.
InChI:InChI=1/C9H10N4OS/c1-14-7-5-3-2-4-6(7)8-11-12-9(15)13(8)10/h2-5H,10H2,1H3,(H,12,15)

61019-26-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-amino-3-(2-methoxyphenyl)-1H-1,2,4-triazole-5-thione

1.2 Other means of identification

Product number -
Other names 4-amino-5-(2-methoxyphenyl)-2,3-dihydro-4H-1,2,4-triazole-3-thione

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:61019-26-9 SDS

61019-26-9Relevant articles and documents

Design, synthesis, biological activity, crystal structure and theoretical calculations of novel 1,2,4-triazole derivatives

Jin, Ruyi,Wang, Yanyan,Guo, Hui,Long, Xu,Li, Jiajia,Yue, Shijun,Zhang, Shuan,Zhang, Guanghui,Meng, Qinghua,Wang, Chuan,Yan, Hao,Tang, Yuping,Zhou, Sha

, (2019/10/28)

Series of 1,2,4-triazole Schiff base (Ia-f) were designed and synthesized. Their in-vitro antifungal activity to pythium solani, gibberlla nicotiancola, fusarium oxysporium fs.p. niveum and gibberlla saubinetii were evaluated. The results showed compound If exhibited good activity with tested fungi, which indicated that 1,2,4-triazole scaffold with introduction of imidazole phenyl could keep the antifungal activity. In order to further research the compound If, the crystal structure was detected by X-ray diffraction. Meanwhile, the FT-IR, FT-Raman, natural bond orbital (NBO), HOMO-LUMO and MEP were calculated at B3LYP/6-311G+(d,p) level. All the results will be helpful for further drug design in 1,2,4-triazole analogues.

Investigation on 4-amino-5-substituent-1,2,4-triazole-3-thione Schiff bases an antifungal drug by characterization (spectroscopic, XRD), biological activities, molecular docking studies and electrostatic potential (ESP)

Wu, Shaojie,Zhang, Wenhui,Qi, Le,Ren, Yinghui,Ma, Haixia

, p. 171 - 182 (2019/07/19)

Four novel Schiff bases 4-(2,4-dinitrobenzylideneamino)-5-m-tolyl-2H-1,2,4-triazole-3(4H)-thione) (F1), 4-(2,4-dinitrobenzylideneamino)-5-(2-methoxyphenyl)-2H-1,2,4-triazole-3(4H)-thione) (F2), 4-(2,4-dinitrobenzylideneamino)-5-(3-methoxyphenyl)-2H-1,2,4-triazole-3(4H)-thione) (F3) and 4-(2,4-dinitrobenzylideneamino)-5-(4-methoxyphenyl)-2H-1,2,4-triazole-3(4H)-thione) (F4) were prepared as new antifungal compounds contributing 4-Amino-5-Substituent-1,2,4-Triazole-3-Thione and 2,4-dinitrobenzaldehyde via a condensation reaction under the mild conditions with excellent yields. The structures of compounds were characterized by elemental analysis (EA), FT-IR, 1H NMR, 13C NMR spectra and X-ray analysis. In addition, the compounds were screened for in vitro biological activity, and the bioassay results indicated that the newly synthesized compounds showed different in vitro antifungal activities against five plant fungi. Particularly, compound F3 (EC50 = 11.16 mg/L) was found to be the most active respectively against Wheat gibberellic, even more effective than Fluconazole (EC50 = 16.03 mg/L). The active compounds were further evaluated for enzyme inhibition efficacy against the receptor CYP51 by docking. Meanwhile, an explicit surface analysis on compounds were carried out theoretically using the wave function analyzer (Multiwfn 3.4.1 software) in order to study the reactivity of the compounds.

Facile synthesis, biological evaluation and molecular docking studies of novel substituted azole derivatives

Rafiq, Muhammad,Saleem, Muhammad,Jabeen, Farukh,Hanif, Muhammad,Seo, Sung-Yum,Kang, Sung Kwon,Lee, Ki Hwan

, p. 177 - 191 (2017/03/15)

In this study, we synthesized the series of novel azole derivatives and evaluated for enzyme inhibition assays, corresponding kinetic analysis and molecular modeling. Among the investigated bioassays, the oxadiazole derivatives 4a-k were found potent α-glucosidase inhibitors while the Schiff base derivatives 7a-k exhibited considerable potential toward urease inhibition. The inhibition kinetics for the most active compounds were analyzed by the Lineweaver–Burk plots to investigate the possible binding modes of the synthesized compounds toward the tested proteins. Moreover, the detailed docking studies were performed on the synthesized library of 4a-k and 7a-k to study the molecular interaction and binding mode in the active site of the modeled yeast α-glucosidase and Jack Bean Urease, respectively. It could be inferred from docking results that theoretical studies are in close agreement to that of the experimental results. The structure of one of the compound 7k was characterized by the single crystal X-ray diffraction analysis in order to find out the predominant conformation of the molecules.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 61019-26-9