Welcome to LookChem.com Sign In|Join Free

CAS

  • or

624286-51-7

Post Buying Request

624286-51-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

624286-51-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 624286-51-7 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 6,2,4,2,8 and 6 respectively; the second part has 2 digits, 5 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 624286-51:
(8*6)+(7*2)+(6*4)+(5*2)+(4*8)+(3*6)+(2*5)+(1*1)=157
157 % 10 = 7
So 624286-51-7 is a valid CAS Registry Number.

624286-51-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 2,4-(Cl)2C6H4CH2OTMS

1.2 Other means of identification

Product number -
Other names 2,4-(Cl)2-C6H4CH2OSiMe3

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:624286-51-7 SDS

624286-51-7Relevant articles and documents

An asymmetric Salamo-based Zn complex supported on Fe3O4MNPs: a novel heterogeneous nanocatalyst for the silyl protection and deprotection of alcohols under mild conditions

Yao, Hongyan,Wang, Yongsheng,Razi, Maryam Kargar

, p. 12614 - 12625 (2021/04/14)

In this study, a magnetic asymmetric Salamo-based Zn complex (H2L = salen type di-Schiff bases)-supported on the surface of modified Fe3O4(Fe3O4@H2L-Zn) as a new catalyst was designed and characterizedvianumerous analytical techniques such as FT-IR spectroscopy, XRD, EDS, ICP-AES, SEM, TEM, TGA and VSM. An efficient and sustainable synthetic protocol has been presented for the synthesis of silyl ether substructuresviathe silyl protection of alcohols under mild conditions. The synthetic protocol involves a two-component solvent-free reaction between various hydroxyl-bearing substrates and hexamethyldisilazane (HMDS) as an inexpensive silylating agent using Fe3O4@H2L-Zn MNPs as a magnetically separable, recyclable and reusable heterogeneous catalyst. Fe3O4@H2L-Zn MNPs were also applied for the removal of silyl protecting groups from hydroxyl functions using water in CH2Cl2under green conditions. The catalyst demonstrated good to excellent catalytic yield efficiency for both the reactions compared to the commercial metal-based catalysts under green conditions for a wide range of substrates.

A simple and efficient room temperature silylation of diverse functional groups with hexamethyldisilazane using CeO2 nanoparticles as solid catalysts

Anbu, Nagaraj,Vijayan, Chellappa,Dhakshinamoorthy, Amarajothi

, (2019/06/08)

In this study, a mild and efficient method is developed for the silylation of diverse functional groups using CeO2 nanoparticles (n-CeO2) as solid catalysts with hexamethyldisilazane (HMDS) as silylating agent at room temperature. Alcohols, phenols and acids are silylated to their respective silyl derivatives with faster reaction rate while amines and thiols required relatively longer reaction time. Moreover, the solid catalyst is easily be separated from the reaction mixture and recycled more than five times without any obvious decay in its activity. Powder X-ray diffraction (XRD), transmission electron microscope (TEM), UV–vis diffuse reflectance spectra (UV-DRS) and Raman analyses revealed identical structural integrity, particle size, absorption edge and valence state for the reused solid compared to the fresh solid catalyst.

Fast and efficient method for Silylation of alcohols and phenols with HMDS in the presence of bis-thiourea complexes of cobalt, nickel, copper and zinc chlorides

Zeynizadeh, Behzad,Sorkhabi, Serve

, p. 127 - 135 (2018/02/06)

Bis-thiourea complexes of cobalt, nickel, copper and zinc chlorides were used efficiently for rapid and efficient trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) in CH3CN. All reactions were carried out at room temperature within immediate-120?min timeframe to afford trimethylsilyl ether derivatives in high to excellent yields. Investigation of the results exhibited that the prepared bis-thiourea metal complexes show the activity as Co(tu)2Cl2> Ni(tu)2Cl2> Cu(tu)2Cl2> Zn(tu)2Cl2 in their silylation reactions.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 624286-51-7