Welcome to LookChem.com Sign In|Join Free

CAS

  • or

62561-74-4

Post Buying Request

62561-74-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

62561-74-4 Usage

Chemical Properties

White to off white powder

Check Digit Verification of cas no

The CAS Registry Mumber 62561-74-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,2,5,6 and 1 respectively; the second part has 2 digits, 7 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 62561-74:
(7*6)+(6*2)+(5*5)+(4*6)+(3*1)+(2*7)+(1*4)=124
124 % 10 = 4
So 62561-74-4 is a valid CAS Registry Number.

62561-74-4 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (H62891)  4-Bromo-D-phenylalanine, 95%   

  • 62561-74-4

  • 250mg

  • 161.0CNY

  • Detail
  • Alfa Aesar

  • (H62891)  4-Bromo-D-phenylalanine, 95%   

  • 62561-74-4

  • 1g

  • 484.0CNY

  • Detail
  • Alfa Aesar

  • (H62891)  4-Bromo-D-phenylalanine, 95%   

  • 62561-74-4

  • 5g

  • 1932.0CNY

  • Detail

62561-74-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name (2R)-2-amino-3-(4-bromophenyl)propanoic acid

1.2 Other means of identification

Product number -
Other names 2-AMINO-3-(4-BROMO-PHENYL)-PROPIONIC ACID

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:62561-74-4 SDS

62561-74-4Relevant articles and documents

A novel phenylalanine ammonia-lyase from Pseudozyma antarctica for stereoselective biotransformations of unnatural amino acids

Varga, Andrea,Csuka, Pál,Sonesouphap, Orlavanah,Bánóczi, Gergely,To?a, Monica Ioana,Katona, Gabriel,Molnár, Zsófia,Bencze, László Csaba,Poppe, László,Paizs, Csaba

, p. 185 - 194 (2020/04/28)

A novel phenylalanine ammonia-lyase of the psychrophilic yeast Pseudozyma antarctica (PzaPAL) was identified by screening microbial genomes against known PAL sequences. PzaPAL has a significantly different substrate binding pocket with an extended loop (26 aa long) connected to the aromatic ring binding region of the active site as compared to the known PALs from eukaryotes. The general properties of recombinant PzaPAL expressed in E. coli were characterized including kinetic features of this novel PAL with L-phenylalanine (S)-1a and further racemic substituted phenylalanines rac-1b-g,k. In most cases, PzaPAL revealed significantly higher turnover numbers than the PAL from Petroselinum crispum (PcPAL). Finally, the biocatalytic performance of PzaPAL and PcPAL was compared in the kinetic resolutions of racemic phenylalanine derivatives (rac-1a-s) by enzymatic ammonia elimination and also in the enantiotope selective ammonia addition reactions to cinnamic acid derivatives (2a-s). The enantiotope selectivity of PzaPAL with o-, m-, p-fluoro-, o-, p-chloro- and o-, m-bromo-substituted cinnamic acids proved to be higher than that of PcPAL.

Engineered Aminotransferase for the Production of d-Phenylalanine Derivatives Using Biocatalytic Cascades

Walton, Curtis J. W.,Parmeggiani, Fabio,Barber, Janet E. B.,McCann, Jenna L.,Turner, Nicholas J.,Chica, Roberto A.

, p. 470 - 474 (2017/12/15)

d-Phenylalanine derivatives are valuable chiral building blocks for a wide range of pharmaceuticals. Here, we developed stereoinversion and deracemization biocatalytic cascades to synthesize d-phenylalanine derivatives that contain electron-donating or -withdrawing substituents of various sizes and at different positions on the phenyl ring with a high enantiomeric excess (90 to >99 % ee) from commercially available racemic mixtures or l-amino acids. These whole-cell systems couple Proteus mirabilis l-amino acid deaminase with an engineered aminotransferase that displays native-like activity towards d-phenylalanine, which we generated from Bacillus sp. YM-1 d-amino acid aminotransferase. Our cascades are applicable to preparative-scale synthesis and do not require cofactor-regeneration systems or chemical reducing agents.

Single-Biocatalyst Synthesis of Enantiopure d-Arylalanines Exploiting an Engineered d-Amino Acid Dehydrogenase

Parmeggiani, Fabio,Ahmed, Syed T.,Thompson, Matthew P.,Weise, Nicholas J.,Galman, James L.,Gahloth, Deepankar,Dunstan, Mark S.,Leys, David,Turner, Nicholas J.

, p. 3298 - 3306 (2016/10/20)

A practical and efficient biocatalytic synthesis of aromatic d-amino acids has been developed, based on the reductive amination of the corresponding α-keto acids via a recombinant whole cell system composed of an engineered dehydrogenase and cofactor recycling apparatus. The reaction was shown to give excellent enantioselectivity (≥98%) and good yields at the preparative scale across a broad range of substrates. Additionally, the structure of the variant enzyme was solved to allow rationalisation of the observed reaction rates. The engineered whole cell catalyst was also used to mediate the production of d-phenylalanine derivatives from racemic mixtures and cheaper l-amino acids by combining it with an enantiocomplementary deaminase. (Figure presented.).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 62561-74-4