6282-06-0Relevant articles and documents
Light-Activated Sensitive Probes for Amine Detection
Valderrey, Virginia,Bonasera, Aurelio,Fredrich, Sebastian,Hecht, Stefan
, p. 1914 - 1918 (2017/02/05)
Our new, simple, and accurate colorimetric method is based on diarylethenes (DAEs) for the rapid detection of a wide range of primary and secondary amines. The probes consist of aldehyde- or ketone-substituted diarylethenes, which undergo an amine-induced decoloration reaction, selectively to give the ring-closed isomer. Thus, these probes can be activated at the desired moment by light irradiation, with a sensitivity that allows the detection of amines at concentrations as low as 10?6m in solution. In addition, the practical immobilization of DAEs on paper makes it possible to detect biogenic amines, such as cadaverine, in the gas phase above a threshold of 12 ppbv within 30 seconds.
Catalytic synthesis of silyl formates with 1 atm of CO2 and their utilization for synthesis of formyl compounds and formic acid
Itagaki, Shintaro,Yamaguchi, Kazuya,Mizuno, Noritaka
, p. 347 - 352 (2013/02/22)
In the presence of simple Rh2(OAc)4 and K 2CO3, the hydrosilylation of CO2 (1 atm) with various hydrosilanes efficiently proceeded to afford the corresponding silyl formates in moderate to high yields (53-90% yields). By using the dimethylphenylsilyl formate produced by the hydrosilylation, formamides, formic acid, and a secondary alcohol (via an aldehyde) could be synthesized by the reaction with various nucleophilic reagents such as amines, aniline, water, and the Grignard reagent.
Amides as Nucleophiles: Reaction of Alkyl Halides with Amides or with Amides and Water. A New Look at an Old Reaction
Brace, Neal O.
, p. 1804 - 1811 (2007/10/02)
Heating of formamide with an alkyl halide (with or without water) affords a mild, nonhydrolytic, high-yield synthesis of alcohols and formate esters.Yet the way in which substitution on the alkyl halide actually occurs remains obscure.To explore this question, thermal reaction of 1-bromooctane (1a) with formamides (HC(O)NHR, R=H, Me; 2a, 2b) was studied quantitatively.Major products are 1-octanol (3) and n-octyl formate (5); minor products are 1-octene (4), di-n-octyl ether (6), and N-octylformamide (7, from 2a, only).Solid coproduct is HC(=NR)NHR + Br(1-) (e.g., 8a, R=H, methanimidamide hydrobromide).Analogously, 1a and N-methylformamide (2b) give alkylated products 3,5, and 6 along with 8b (R=Me). 1-Iodooctane (1b) reacts similarly.Probe samples show that 1-octanol (3) is first formed, followed by 5 and 6.Occurence of 8a-c is key to a mechanistic interpretation of the reaction.An imidate ("salt I"), e.g., from 1a and 2b, is first formed and reacts with amide 2b to give and 3.Now alcohol 3 is converted to ester 5 and 8b by reaction with this same formylamidine.Water, if present, adds to the imidate and gives a new tetrahedral intermediate that cleaves to ester 5 and amide salt, RNH3X.Analogous reaction steps are proposed to generate side products 4, 6, and 7.Alkylation of formamide by C6F13CH2CH2I (1c) is considerably slower and less efficient than alkylation by 1-bromooctane.This result stands in sharp contrast to fast, efficient reaction of 1c with N-methylformamide or with DMF and water.