Welcome to LookChem.com Sign In|Join Free

CAS

  • or

65530-26-9

Post Buying Request

65530-26-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

65530-26-9 Usage

General Description

Methyl 4,6-O-benzylidene-α-D-mannopyranoside is a chemical compound with a molecular formula C14H18O6. It is a derivative of α-D-mannose, a sugar molecule found in various plants and microorganisms. Methyl 4,6-O-benzylidene-α-D-mannopyranoside is often used in chemical synthesis and research as a building block for the preparation of other carbohydrate derivatives. It is a white crystalline solid that is sparingly soluble in water and commonly used as a reagent in organic chemistry. Methyl4,6-O-benzylidene-a-D-mannopyranoside has potential applications in the pharmaceutical and food industries, particularly in the development of new drugs and sweetening agents.

Check Digit Verification of cas no

The CAS Registry Mumber 65530-26-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,5,5,3 and 0 respectively; the second part has 2 digits, 2 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 65530-26:
(7*6)+(6*5)+(5*5)+(4*3)+(3*0)+(2*2)+(1*6)=119
119 % 10 = 9
So 65530-26-9 is a valid CAS Registry Number.

65530-26-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name (4aR,6S,7S,8S,8aS)-6-methoxy-2-phenyl-4,4a,6,7,8,8a-hexahydropyrano[3,2-d][1,3]dioxine-7,8-diol

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:65530-26-9 SDS

65530-26-9Relevant articles and documents

Acceleration and deceleration factors on the hydrolysis reaction of 4,6-O-benzylidene acetal group

Maki, Yuta,Kajihara, Yasuhiro,Nomura, Kota,Okamoto, Ryo,Izumi, Masayuki,Mizutani, Yasuhisa

, p. 15849 - 15856 (2021/01/18)

The benzylidene acetal group is one of the most important protecting groups not only in carbohydrate chemistry but also in general organic chemistry. In the case of 4,6-O-benzylidene glycosides, we previously found that the stereochemistry at 4-position altered the reaction rate constant for hydrolysis of benzylidene acetal group. However, a detail of the acceleration or deceleration factor was still unclear. In this work, the hydrolysis reaction of benzylidene acetal group was analyzed using the Arrhenius and Eyring plot to obtain individual parameters for glucosides (Glc), mannosides (Man), and galactosides (Gal). The Arrhenius and Eyring plot indicated that the pre-exponential factor (A) and ΔS? were critical for the smallest reaction rate constant of Gal among nonacetylated substrates. On the other hand, both Ea/ΔH? and A/ΔS? were influential for the smallest reaction rate constant of Gal among diacetylated substrates. All parameters obtained suggested that the rate constant for hydrolysis reaction was regulated by protonation and hydration steps along with solvation. The obtained parameters support wide use of benzylidene acetal group as orthogonal protection of cis- and trans-fused bicyclic systems through the fast hydrolysis of the trans-fused benzylidene acetal group.

Conformational analysis of the disaccharide methyl a-d-mannopyranosyl-(1→3)-2-O-acetyl-β-D-manno-pyranoside monohydrate

Zhang, Wenhui,Wu, Qingquan,Oliver, Allen G.,Serianni, Anthony S.

, p. 610 - 615 (2019/06/14)

The crystal structure of methyl β-d-mannopyranosyl-(1→3)-2-O-acetyl-β-d-mannopyranoside monohydrate, C15H26O12.H2O, (II), has been determined and the structural parameters for its constituent β-d-mannopyranosyl residue compared with those for methyl β-d-mannopyranoside. Mono-O-acetylation appears to promote the crystallization of (II), inferred from the difficulty in crystallizing methyl β-d-mannopyranosyl-(1→3)-β-d-mannopyranoside despite repeated attempts. The conformational properties of the O-acetyl side chain in (II) are similar to those observed in recent studies of peracetylated mannose-containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C O bond of the acetyl group. The C2—O2 bond in (II) elongates by ≈0.02 ? upon O-acetylation. The phi (φ) and psi () torsion angles that dictate the conformation of the internal O-glycosidic linkage in (II) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated (II) using the statistical program MA'AT, with a greater disparity found for (? = ≈16°) than for φ (? = ≈6°).

Binding of the Bacterial Adhesin FimH to Its Natural, Multivalent High-Mannose Type Glycan Targets

Sauer, Maximilian M.,Jakob, Roman P.,Luber, Thomas,Canonica, Fabia,Navarra, Giulio,Ernst, Beat,Unverzagt, Carlo,Maier, Timm,Glockshuber, Rudi

supporting information, p. 936 - 944 (2019/01/11)

Multivalent carbohydrate-lectin interactions at host-pathogen interfaces play a crucial role in the establishment of infections. Although competitive antagonists that prevent pathogen adhesion are promising antimicrobial drugs, the molecular mechanisms underlying these complex adhesion processes are still poorly understood. Here, we characterize the interactions between the fimbrial adhesin FimH from uropathogenic Escherichia coli strains and its natural high-mannose type N-glycan binding epitopes on uroepithelial glycoproteins. Crystal structures and a detailed kinetic characterization of ligand-binding and dissociation revealed that the binding pocket of FimH evolved such that it recognizes the terminal α(1-2)-, α(1-3)-, and α(1-6)-linked mannosides of natural high-mannose type N-glycans with similar affinity. We demonstrate that the 2000-fold higher affinity of the domain-separated state of FimH compared to its domain-associated state is ligand-independent and consistent with a thermodynamic cycle in which ligand-binding shifts the association equilibrium between the FimH lectin and the FimH pilin domain. Moreover, we show that a single N-glycan can bind up to three molecules of FimH, albeit with negative cooperativity, so that a molar excess of accessible N-glycans over FimH on the cell surface favors monovalent FimH binding. Our data provide pivotal insights into the adhesion properties of uropathogenic Escherichia coli strains to their target receptors and a solid basis for the development of effective FimH antagonists.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 65530-26-9