66585-05-5Relevant articles and documents
Oxygenolysis of a series of copper(ii)-flavonolate adducts varying the electronic factors on supporting ligands as a mimic of quercetin 2,4-dioxygenase-like activity
Anoop, Anakuthil,Dey, Subhasis,Mandal, Sukanta,Podder, Nirmalya
supporting information, p. 4338 - 4353 (2022/04/07)
Four copper(ii)-flavonolate compounds of type [Cu(LR)(fla)] {where LR = 2-(p-R-benzyl(dipyridin-2-ylmethyl)amino)acetate; R = -OMe (1), -H (2), -Cl (3) and -NO2 (4)} have been developed as a structural and functional enzyme-substrate (ES) model of the Cu2+-containing quercetin 2,4-dioxygenase enzyme. The ES model complexes 1-4 are synthesized by reacting 3-hydroxyflavone in the presence of a base with the respective acetate-bound copper(ii) complexes, [Cu(LR)(OAc)]. In the presence of dioxygen the ES model complexes undergo enzyme-type oxygenolysis of flavonolate (dioxygenase type bond cleavage reaction) at 80 °C in DMF. The reactivity shows a substituent group dependent order as -OMe (1) > -H (2) > -Cl (3) > ?NO2 (4). Experimental and theoretical studies suggest a single-electron transfer (SET) from flavonolate to dioxygen, rather than valence tautomerism {[CuII(fla?)] ? [CuI(fla˙)]}, to generate the reactive flavonoxy radical (fla˙) that reacts further with the superoxide radical to bring about the oxygenative ring opening reaction. The SET pathway has been further verified by studying the dioxygenation reaction with a redox-inactive Zn2+ complex, [Zn(LOMe)(fla)] (5).
Exploring 3-Benzyloxyflavones as new lead cholinesterase inhibitors: synthesis, structure–activity relationship and molecular modelling simulations
Mughal, Ehsan Ullah,Sadiq, Amina,Ayub, Momna,Naeem, Nafeesa,Javid, Asif,Sumrra, Sajjad Hussain,Zafar, Muhammad Naveed,Khan, Bilal Ahmad,Malik, Fouzia Perveen,Ahmed, Ishtiaq
, p. 6154 - 6167 (2020/08/10)
In this protocol, a series of 3-benzyloxyflavone derivatives have been designed, synthesized, characterized and investigated in?vitro as cholinesterase inhibitors. The findings showed that all the synthesized target compounds (1–10) are potent dual inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes with varying IC50 values. In comparison, they are more active against AChE than BChE. Remarkably, amongst the series, the compound 2 was identified as the most active inhibitor of both AChE (IC50 = 0.05 ± 0.01 μM) and BChE (IC50 = 0.09 ± 0.02 μM) relative to the standard Donepezil (IC50 = 0.09 ± 0.01 for AChE and 0.13 ± 0.04 μM for BChE). Moreover, the derivatives 5 (IC50 = 0.07 ± 0.02 μM) and 10 (0.08 ± 0.02 μM) exhibited the highest selective inhibition against AChE as compared to the standard. Preliminary structure-activity relationship was established and thus found that cholinesterase inhibitory activities of these compounds are highly dependent on the nature and position of various substituents on Ring-B of the 3-Benzyloxyflavone scaffolds. In order to find out the nature of binding interactions of the compounds and active sites of the enzymes, molecular docking studies were carried out. (Figure presented.) HIGHLIGHTS 3-benzyloxyflavone analogues were designed, synthesized and characterized. The target molecules (1–10) were evaluated for their inhibitory potential against AChE and BChE inhibitory activities. Limited structure-activity relationship was developed based on the different substituent patterns on aryl part. Molecular docking studies were conducted to correlate the in?vitro results and to identify possible mode of interactions at the active pocket site of the enzyme. Communicated by Ramaswamy H. Sarma.
Exploring 3-hydroxyflavone scaffolds as mushroom tyrosinase inhibitors: synthesis, X-ray crystallography, antimicrobial, fluorescence behaviour, structure-activity relationship and molecular modelling studies
Ashraf, Jamshaid,Mughal, Ehsan Ullah,Sadiq, Amina,Bibi, Maryam,Naeem, Nafeesa,Ali, Anser,Massadaq, Anam,Fatima, Nighat,Javid, Asif,Zafar, Muhammad Naveed,Khan, Bilal Ahmad,Nazar, Muhammad Faizan,Mumtaz, Amara,Tahir, Muhammad Nawaz,Mirzaei, Masoud
, p. 7107 - 7122 (2020/08/21)
To explore new scaffolds as tyrosinase enzyme inhibitors remain an interesting goal in the drug discovery and development. In due course and our approach to synthesize bioactive compounds, a series of varyingly substituted 3-hydroxyflavone derivatives (1-23) were synthesized in one-pot reaction and screened for in?vitro against mushroom tyrosinase enzyme. The structures of newly synthesized compounds were unambiguously corroborated by usual spectroscopic techniques (FTIR, UV-Vis, 1H-, 13C-NMR) and mass spectrometry (EI-MS). The structure of compound 15 was also characterized by X-ray diffraction analysis. Furthermore, the synthesized compounds (1-23) were evaluated for their antimicrobial potential. Biological studies exhibit pretty good activity against most of the bacterial-fungal strains and their activity is comparable to those of commercially available antibiotics i.e. Cefixime and Clotrimazole. Amongst the series, the compounds 2, 4, 5, 6, 7, 10, 11, 14 and 22 exhibited excellent inhibitory activity against tyrosinase, even better than standard compound. Remarkably, the compound 2 (IC50 = 0.280 ± 0.010 μg/ml) was found almost sixfold and derivative 5 (IC50 = 0.230 ± 0.020 μg/ml) about sevenfold more active as compared to standard Kojic acid (IC50 =1.79 ± 0.6 μg/ml). Moreover, these synthetic compounds (1-23) displayed good to moderate activities against tested bacterial and fungal strains. Their emission behavior was also investigated in order to know their potential as fluorescent probes. The molecular modelling simulations were also performed to explore their binding interactions with active sites of the tyrosinase enzyme. Limited structure-activity relationship was established to design and develop new tyrosinase inhibitors by employing 2-arylchromone as a structural core in the future. Communicated by Ramaswamy H. Sarma.
Synthesis, inverse docking-assisted identification and in vitro biological characterization of Flavonol-based analogs of fisetin as c-Kit, CDK2 and mTOR inhibitors against melanoma and non-melanoma skin cancers
Roy, Tithi,Boateng, Samuel T.,Banang-Mbeumi, Sergette,Singh, Pankaj K.,Basnet, Pratik,Chamcheu, Roxane-Cherille N.,Ladu, Federico,Chauvin, Isabel,Spiegelman, Vladimir S.,Hill, Ronald A.,Kousoulas, Konstantin G.,Nagalo, Bolni Marius,Walker, Anthony L.,Fotie, Jean,Murru, Siva,Sechi, Mario,Chamcheu, Jean Christopher
, (2021/01/14)
Due to hurdles, including resistance, adverse effects, and poor bioavailability, among others linked with existing therapies, there is an urgent unmet need to devise new, safe, and more effective treatment modalities for skin cancers. Herein, a series of flavonol-based derivatives of fisetin, a plant-based flavonoid identified as an anti-tumorigenic agent targeting the mammalian targets of rapamycin (mTOR)-regulated pathways, were synthesized and fully characterized. New potential inhibitors of receptor tyrosine kinases (c-KITs), cyclin-dependent kinase-2 (CDK2), and mTOR, representing attractive therapeutic targets for melanoma and non-melanoma skin cancers (NMSCs) treatment, were identified using inverse-docking, in vitro kinase activity and various cell-based anticancer screening assays. Eleven compounds exhibited significant inhibitory activities greater than the parent molecule against four human skin cancer cell lines, including melanoma (A375 and SK-Mel-28) and NMSCs (A431 and UWBCC1), with IC50 values ranging from 0.12 to 15 μM. Seven compounds were identified as potentially potent single, dual or multi-kinase c-KITs, CDK2, and mTOR kinase inhibitors after inverse-docking and screening against twelve known cancer targets, followed by kinase activity profiling. Moreover, the potent compound F20, and the multi-kinase F9 and F17 targeted compounds, markedly decreased scratch wound closure, colony formation, and heightened expression levels of key cancer-promoting pathway molecular targets c-Kit, CDK2, and mTOR. In addition, these compounds downregulated Bcl-2 levels and upregulated Bax and cleaved caspase-3/7/8 and PARP levels, thus inducing apoptosis of A375 and A431 cells in a dose-dependent manner. Overall, compounds F20, F9 and F17, were identified as promising c-Kit, CDK2 and mTOR inhibitors, worthy of further investigation as therapeutics, or as adjuvants to standard therapies for the control of melanoma and NMSCs.
Simultaneous Two-Color Visualization of Lipid Droplets and Endoplasmic Reticulum and Their Interplay by Single Fluorescent Probes in Lambda Mode
Guo, Lifang,Tian, Minggang,Zhang, Zhiyun,Lu, Qing,Liu, Zhiqiang,Niu, Guangle,Yu, Xiaoqiang
supporting information, p. 3169 - 3179 (2021/03/01)
In living systems, subcellular organelles mutually cooperate and closely contact to form organelle interaction networks. Thus, the simultaneous and discriminative visualization of different organelles is extremely valuable for elucidating their distribution and interplay. However, such meaningful investigations remain a great challenge due to the lack of advanced single fluorescent probes (SF-probes) capable of simultaneous and two-color imaging of two targets. Herein, for the first time, we present two excited-state intramolecular proton transfer (ESIPT) based SF-probes (PPC and EPC) for simultaneous two-color fluorescence imaging of lipid droplets (LDs) and the endoplasmic reticulum (ER) under single-wavelength excitation. Due to the strong electron-donating ability of the side substituents, the fluorescence spectra and colors of these ESIPT probes are highly sensitive to the nuance of water contents between LDs and ER, leading to orange and green fluorescence in LDs and ER, respectively, in the Lambda imaging mode. Using the probe PPC or EPC, the morphology, size, and distribution of LDs and ER have been investigated in live cells and tissues. With the aid of in situ and real-time fluorescence imaging in Lambda mode, we observed the generation of newborn LDs near the ER regions and their close apposition and shared identical fluorescence colors, probably providing a valuable proof for the mainstream hypothesis that LDs originate from the ER. The remarkable imaging performances render these SF-probes as powerful tools to decipher LD-ER related biological processes.
COMPOSITION FOR IMPROVING RESPIRATORY HEALTH CONTINUOUSLY EXPOSED TO PARTICULATE MATTER ATMOSPHERE
-
, (2021/12/17)
An aspect of the present disclosure relates to a composition for improving respiratory health exposed to particulate matter, which contains a green tea extract, a green tea polysaccharide and a green tea flavonol as active ingredients. The composition provided in an aspect of the present disclosure can improve respiratory health damaged by exposure to particulate matter by enhancing the effect of preventing adsorption of particulate matter to bronchial epithelial cells and activating the cilia of bronchial epithelial cells. The composition provided in an aspect of the present disclosure may decrease blood heavy metal level.
Bismuth(III) Flavonolates: The Impact of Structural Diversity on Antibacterial Activity, Mammalian Cell Viability and Cellular Uptake
Burke, Kirralee J.,Stephens, Liam J.,Werrett, Melissa V.,Andrews, Philip C.
, p. 7657 - 7671 (2020/06/02)
A series of homoleptic and heteroleptic bismuth(III) flavonolate complexes derived from six flavonols of varying substitution have been synthesised and structurally characterised. The complexes were evaluated for antibacterial activity towards several problematic Gram-positive (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE)) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. The cell viability of COS-7 (monkey kidney) cells treated with the bismuth flavonolates was also studied to determine the effect of the complexes on mammalian cells. The heteroleptic complexes [BiPh(L)2] (in which L=flavonolate) showed good antibacterial activity towards all of the bacteria but reduced COS-7 cell viability in a concentration-dependent manner. The homoleptic complexes [Bi(L)3] exhibited activity towards the Gram-positive bacteria and showed low toxicity towards the mammalian cell line. Bismuth uptake studies in VRE and COS-7 cells treated with the bismuth flavonolate complexes indicated that Bi accumulation is influenced by both the substitution of the flavonolate ligands and the degree of substitution at the bismuth centre.
Synthesis of Flavonols via Pyrrolidine Catalysis: Origins of the Selectivity for Flavonol versus Aurone
Xiong, Wei,Wang, Xiaohong,Shen, Xianyan,Hu, Cuifang,Wang, Xin,Wang, Fei,Zhang, Guolin,Wang, Chun
supporting information, p. 13160 - 13176 (2020/11/23)
A novel synthetic method for flavonol from 2′-hydroxyl acetophenone and benzaldehyde promoted by pyrrolidine under an aerobic condition in water is established. This protocol was supported by efficient synthesis of 44 common examples and three natural products. The α, β-unsaturated iminium ion (enimine ion E) was proved to be the key intermediate in the reaction. H218O and 18O2 isotope tracking experiments demonstrated that both water and the aerobic atmosphere were necessary to ensure the transformation. The selectivity for flavonol or aurone was originated from solvent-triggered intermediates, which were determined by UV-visible spectra from isolated enimine. The phenol-iminium E-A is dominant in water and the ketoenamine intermediate E-B is prevalent in acetonitrile. In the presence of pyrrolidine and oxygen, E-A leads to flavonol through E-I, a zwitterionic-like phenoloxyl-iminium ion, following the key steps of cyclization and a [2 + 2] oxidation; E-B proceeds through path II, a radical process induced by photolysis of E-B with both pyrrolidine and oxygen, to afford aurone. Preliminary mechanistic studies are reported.
Flavonol dyes with different substituents in photopolymerization
You, Jian,Fu, Hongyuan,Zhao, Di,Hu, Tianyu,Nie, Jun,Wang, Tao
, (2019/09/30)
To further expand the applications of flavonol dyes (3HFs) in photopolymerization, six flavonol dyes with different substituents were prepared by using the Algar–Flynn–Oyamada method. The steady-state photolysis and fluorescence quenching of 3HFs under the 385 nm LED light source showed that the proton transfer reaction preceded the charge transfer reaction between 3HFs and triethanolamine (TEOA) or iodonium salts (ONI), and groups with different electron properties could affect the photochemistry of 3HFs. The influence of substituents on the free radical polymerization efficiencies of 3HFs/TEOA and 3HFs/ONI was evaluated. Results showed that charge transfer occurred in the oxidation or reduction processes between 3HFs and TEOA or ONI. The possible mechanism was speculated, and the thermal feasibility of charge transfer between 3HFs and TEOA or ONI was calculated on the basis of the free energy changes of photoinduced electron transfer.
Faster and More Specific: Excited-State Intramolecular Proton Transfer-Based Dyes for High-Fidelity Dynamic Imaging of Lipid Droplets within Cells and Tissues
Jiang, Gangwei,Jin, Yi,Li, Man,Liu, Changlin,Liu, Chunrong,Ren, Zhuqing,Wang, Huiling,Xiong, Mengyao,Yuan, Hong,Zeng, Weili
, p. 10342 - 10349 (2020/09/18)
Lipid droplets (LDs), a type of dynamic organelle residing at the center of cellular lipid storage, have been identified to play important roles in multiple biological processes, metabolic disorders, and diseases. The highly dynamic characters of LDs were found to correspond to their physiological and pathological functions. Hence, the fluorescent probes which enable dynamic tracking of LDs should be very helpful for better understanding the mechanisms of LDs involved biological processes and diseases. Herein we present, to the best of our knowledge, the first class of excited-state intramolecular proton transfer (ESIPT) fluorescence dyes (Flp-(11-13, 19)) for dynamic imaging of LDs based on 3-hydroxyflavone (3HF) derivatives. Flp-(11-13, 19) display strong fluorescence from yellow to NIR in lipid but exhibit almost nonfluorescence in aqueous solution. Besides, they also show large Stokes shifts (>150 nm), narrow absorption and emission peaks, and good oil-water separation efficiency, which makes them specifically target and stain LDs with very low background noisy in both living cells and fixed cells. They stain intracellular LDs quite quickly (within 30 s) with very low dosage (as low as 500 nM). Benefitting from these advantages, Flp-(11-13, 19) are applied successfully in tracking the dynamic nature of LDs and accumulation of LDs in both aqueous solution and living cells, 3D imaging of LDs for visualization of their repartition within the cells, and visualizing LDs in tissues of diseases mice models including adipose, skeletal muscle, and fatty liver tissues, underscoring the potential utility of these dyes in both LDs biology research and medical diagnosis of LDs involved diseases.