Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6845-81-4

Post Buying Request

6845-81-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6845-81-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 6845-81-4 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,8,4 and 5 respectively; the second part has 2 digits, 8 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 6845-81:
(6*6)+(5*8)+(4*4)+(3*5)+(2*8)+(1*1)=124
124 % 10 = 4
So 6845-81-4 is a valid CAS Registry Number.
InChI:InChI=1/C9H7ClO3/c10-9(11)4-6-1-2-7-8(3-6)13-5-12-7/h1-3H,4-5H2

6845-81-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-(1,3-benzodioxol-5-yl)acetyl chloride

1.2 Other means of identification

Product number -
Other names 3,4-methylenedioxyphenylacetic acid chloride

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:6845-81-4 SDS

6845-81-4Relevant articles and documents

A Diverse Library of Chiral Cyclopropane Scaffolds via Chemoenzymatic Assembly and Diversification of Cyclopropyl Ketones

Nam, Donggeon,Steck, Viktoria,Potenzino, Robert J.,Fasan, Rudi

, p. 2221 - 2231 (2021/02/16)

Chiral cyclopropane rings are key pharmacophores in pharmaceuticals and bioactive natural products, making libraries of these building blocks a valuable resource for drug discovery and development campaigns. Here, we report the development of a chemoenzymatic strategy for the stereoselective assembly and structural diversification of cyclopropyl ketones, a highly versatile yet underexploited class of functionalized cyclopropanes. An engineered variant of sperm whale myoglobin is shown to enable the highly diastereo- and enantioselective construction of these molecules via olefin cyclopropanation in the presence of a diazoketone carbene donor reagent. This biocatalyst offers a remarkably broad substrate scope, catalyzing this reaction with high stereoselectivity across a variety of vinylarene substrates as well as a range of different α-aryl and α-alkyl diazoketone derivatives. Chemical transformation of these enzymatic products enables further diversification of these molecules to yield a collection of structurally diverse cyclopropane-containing scaffolds in enantiopure form, including core motifs found in drugs and natural products as well as novel structures. This work illustrates the power of combining abiological biocatalysis with chemoenzymatic synthesis for generating collections of optically active scaffolds of high value for medicinal chemistry and drug discovery.

N-monoarylacetothioureas as potent urease inhibitors: synthesis, SAR, and biological evaluation

Fang, Hai-Lian,He, Jie-Ling,Li, Wei-Yi,Liu, Shan-Shan,Ni, Wei-Wei,Pan, Xing-Ming,Xiao, Zhu-Ping,Ye, Ya-Xi,Yi, Juan,Zhou, Mi,Zhou, Tian-Li,Zhu, Hai-Liang

, p. 404 - 413 (2020/01/03)

A urease inhibitor with good in vivo profile is considered as an alternative agent for treating infections caused by urease-producing bacteria such as Helicobacter pylori. Here, we report a series of N-monosubstituted thioureas, which act as effective urease inhibitors with very low cytotoxicity. One compound (b19) was evaluated in detail and shows promising features for further development as an agent to treat H. pylori caused diseases. Excellent values for the inhibition of b19 against both extracted urease and urease in intact cell were observed, which shows IC50 values of 0.16 ± 0.05 and 3.86 ± 0.10 μM, being 170- and 44-fold more potent than the clinically used drug AHA, respectively. Docking simulations suggested that the monosubstituted thiourea moiety penetrates urea binding site. In addition, b19 is a rapid and reversible urease inhibitor, and displays nM affinity to urease with very slow dissociation (koff=1.60 × 10?3 s?1) from the catalytic domain.

Ni-Catalyzed Regiodivergent and Stereoselective Hydroalkylation of Acyclic Branched Dienes with Unstabilized C(sp3) Nucleophiles

Shao, Wen,Besnard, Céline,Guénée, Laure,Mazet, Clément

supporting information, p. 16486 - 16492 (2020/10/26)

Two complementary regiodivergent [(P,N)Ni]-catalyzed hydroalkylations of branched dienes are reported. When amides are employed as unstabilized C(sp3) nucleophiles, a highly regioselective 1,4-addition process is favored. The addition products are obtained in high yield and with excellent stereocontrol of the internal olefin. With use of a chiral ligand and imides as carbon nucleophiles, a 3,4-addition protocol was developed, enabling construction of two contiguous tertiary stereocenters in a single step with moderate to high levels of diastereocontrol and excellent enantiocontrol. Both methods operate under mild reaction conditions, display a broad scope, and show excellent functional group tolerance. The synthetic potential of the 3,4-hydroalkylation reaction was established via a series of postcatalytic modifications.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6845-81-4