701-99-5Relevant articles and documents
Novel 4-(3-phenylpropionamido), 4-(2-phenoxyacetamido) and 4-(cinnamamido) substituted benzamides bearing the pyrazole or indazole nucleus: synthesis, biological evaluation and mechanism of action
Raffa, Demetrio,D'Anneo, Antonella,Plescia, Fabiana,Daidone, Giuseppe,Lauricella, Marianna,Maggio, Benedetta
, p. 367 - 379 (2019)
Based on some common structural features of known compounds interfering with p53 pathways and our previously synthesized benzamides, we synthesized new ethyl 5-(4-substituted benzamido)-1-phenyl-1H-pyrazole-4-carboxylates 26a-c, ethyl 5-(4-substituted benzamido)-1-(pyridin-2-yl)-1H-pyrazole-4-carboxylates 27a-c and N-(1H-indazol-6-yl)-4-substituted benzamides 31a,b bearing in the 4 position of the benzamido moiety the 2-phenylpropanamido or 2-phenoxyacetamido or cinnamamido groups. A preliminary test to evaluate the antiproliferative activity against human lung carcinoma H292 cells highlighted how compound 26c showed the best activity. This last was therefore selected for further studies with the aim to find the mechanism of action. Compound 26c induces intrinsic apoptotic pathway by activating p53 and is also able to activate TRAIL-inducing death pathway by promoting increase of DR4 and DR5 death receptors, downregulation of c-FLIPL and caspase-8 activation.
Synthesis of N-trifluoromethyl amides from carboxylic acids
Flavell, Robert R.,Liu, Jianbo,Parker, Matthew F. L.,Toste, F. Dean,Wang, Sinan,Wilson, David M.
supporting information, p. 2245 - 2255 (2021/08/12)
Found in biomolecules, pharmaceuticals, and agrochemicals, amide-containing molecules are ubiquitous in nature, and their derivatization represents a significant methodological goal in fluorine chemistry. Trifluoromethyl amides have emerged as important functional groups frequently found in pharmaceutical compounds. To date, there is no strategy for synthesizing N-trifluoromethyl amides from abundant organic carboxylic acid derivatives, which are ideal starting materials in amide synthesis. Here, we report the synthesis of N-trifluoromethyl amides from carboxylic acid halides and esters under mild conditions via isothiocyanates in the presence of silver fluoride at room temperature. Through this strategy, isothiocyanates are desulfurized with AgF, and then the formed derivative is acylated to afford N-trifluoromethyl amides, including previously inaccessible structures. This method shows broad scope, provides a platform for rapidly generating N-trifluoromethyl amides by virtue of the diversity and availability of both reaction partners, and should find application in the modification of advanced intermediates.
Toward Soluble 5,10-Diheterotruxenes: Synthesis and Reactivity of 5,10-Dioxatruxenes, 5,10-Dithiatruxenes, and 5,10-Diazatruxenes
Górski, Krzysztof,Mech-Piskorz, Justyna,Le?niewska, Barbara,Pietraszkiewicz, Oksana,Pietraszkiewicz, Marek
, p. 4672 - 4681 (2020/05/01)
The following work presents three general approaches allowing, for the first time, the synthesis of 5,10-diheterotruxene derivatives containing two identical heteroatoms, namely, oxygen OOC, nitrogen NNC, or sulfur SSC. Two of described pathways involve the photocyclization of the corresponding triene 2 as a key step leading to a heptacyclic aromatic system. The third approach is based on the acidic condensation between ninhydrin 14 and benzo[b]heteroole 15. Typical functionalizations of the 5,10-diheterotruxene core have also been presented. In addition, the article discusses the advantages and limitations of the three suggested paths for receiving specific 5,10-diheterotruxene derivatives because the universal method suitable for obtaining molecules with any type of heteroatoms is not known so far.