Welcome to LookChem.com Sign In|Join Free

CAS

  • or

709653-55-4

Post Buying Request

709653-55-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

709653-55-4 Usage

General Description

BIPHENYL-3-CARBOXYLIC ACID HYDRAZIDE is a chemical compound with the molecular formula C13H12N2O2. It is a hydrazide derivative of biphenyl-3-carboxylic acid and is commonly used in organic synthesis and pharmaceutical research. This chemical is a white to pale yellow crystalline powder that is sparingly soluble in water but soluble in organic solvents such as ethanol and acetone. It is primarily used as a raw material for the synthesis of various pharmaceutical compounds and is known for its ability to act as a chelating agent and form complexes with metal ions, making it useful in a variety of chemical and biological research applications.

Check Digit Verification of cas no

The CAS Registry Mumber 709653-55-4 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 7,0,9,6,5 and 3 respectively; the second part has 2 digits, 5 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 709653-55:
(8*7)+(7*0)+(6*9)+(5*6)+(4*5)+(3*3)+(2*5)+(1*5)=184
184 % 10 = 4
So 709653-55-4 is a valid CAS Registry Number.

709653-55-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-phenylbenzohydrazide

1.2 Other means of identification

Product number -
Other names [1,1'-Biphenyl]-3-carbohydrazide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:709653-55-4 SDS

709653-55-4Downstream Products

709653-55-4Relevant articles and documents

4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors

Gavara, Laurent,Legru, Alice,Verdirosa, Federica,Sevaille, Laurent,Nauton, Lionel,Corsica, Giuseppina,Mercuri, Paola Sandra,Sannio, Filomena,Feller, Georges,Coulon, Rémi,De Luca, Filomena,Cerboni, Giulia,Tanfoni, Silvia,Chelini, Giulia,Galleni, Moreno,Docquier, Jean-Denis,Hernandez, Jean-Fran?ois

, (2021/06/15)

In Gram-negative bacteria, the major mechanism of resistance to β-lactam antibiotics is the production of one or several β-lactamases (BLs), including the highly worrying carbapenemases. Whereas inhibitors of these enzymes were recently marketed, they only target serine-carbapenemases (e.g. KPC-type), and no clinically useful inhibitor is available yet to neutralize the class of metallo-β-lactamases (MBLs). We are developing compounds based on the 1,2,4-triazole-3-thione scaffold, which binds to the di-zinc catalytic site of MBLs in an original fashion, and we previously reported its promising potential to yield broad-spectrum inhibitors. However, up to now only moderate antibiotic potentiation could be observed in microbiological assays and further exploration was needed to improve outer membrane penetration. Here, we synthesized and characterized a series of compounds possessing a diversely functionalized alkyl chain at the 4-position of the heterocycle. We found that the presence of a carboxylic group at the extremity of an alkyl chain yielded potent inhibitors of VIM-type enzymes with Ki values in the μM to sub-μM range, and that this alkyl chain had to be longer or equal to a propyl chain. This result confirmed the importance of a carboxylic function on the 4-substituent of 1,2,4-triazole-3-thione heterocycle. As observed in previous series, active compounds also preferentially contained phenyl, 2-hydroxy-5-methoxyphenyl, naphth-2-yl or m-biphenyl at position 5. However, none efficiently inhibited NDM-1 or IMP-1. Microbiological study on VIM-2-producing E. coli strains and on VIM-1/VIM-4-producing multidrug-resistant K. pneumoniae clinical isolates gave promising results, suggesting that the 1,2,4-triazole-3-thione scaffold worth continuing exploration to further improve penetration. Finally, docking experiments were performed to study the binding mode of alkanoic analogues in the active site of VIM-2.

Discovery of acylsulfonohydrazide-derived inhibitors of the lysine acetyltransferase, kat6a, as potent senescence-inducing anti-cancer agents

Priebbenow, Daniel L.,Leaver, David J.,Nguyen, Nghi,Cleary, Benjamin,Lagiakos, H. Rachel,Sanchez, Julie,Xue, Lian,Huang, Fei,Sun, Yuxin,Mujumdar, Prashant,Mudududdla, Ramesh,Varghese, Swapna,Teguh, Silvia,Charman, Susan A.,White, Karen L.,Shackleford, David M.,Katneni, Kasiram,Cuellar, Matthew,Strasser, Jessica M.,Dahlin, Jayme L.,Walters, Michael A.,Street, Ian P.,Monahan, Brendon J.,Jarman, Kate E.,Jousset Sabroux, Helene,Falk, Hendrik,Chung, Matthew C.,Hermans, Stefan J.,Downer, Natalie L.,Parker, Michael W.,Voss, Anne K.,Thomas, Tim,Baell, Jonathan B.

, p. 4655 - 4684 (2020/06/08)

A high-throughput screen designed to discover new inhibitors of histone acetyltransferase KAT6A uncovered CTX-0124143 (1), a unique aryl acylsulfonohydrazide with an IC50 of 1.0 μM. Using this acylsulfonohydrazide as a template, we herein disclose the results of our extensive structure-activity relationship investigations, which resulted in the discovery of advanced compounds such as 55 and 80. These two compounds represent significant improvements on our recently reported prototypical lead WM-8014 (3) as they are not only equivalently potent as inhibitors of KAT6A but are less lipophilic and significantly more stable to microsomal degradation. Furthermore, during this process, we discovered a distinct structural subclass that contains key 2-fluorobenzenesulfonyl and phenylpyridine motifs, culminating in the discovery of WM-1119 (4). This compound is a highly potent KAT6A inhibitor (IC50 = 6.3 nM; KD = 0.002 μM), competes with Ac-CoA by binding to the Ac-CoA binding site, and has an oral bioavailability of 56% in rats.

1,2,4-Triazole-3-thione Compounds as Inhibitors of Dizinc Metallo-β-lactamases

Sevaille, Laurent,Gavara, Laurent,Bebrone, Carine,De Luca, Filomena,Nauton, Lionel,Achard, Maud,Mercuri, Paola,Tanfoni, Silvia,Borgianni, Luisa,Guyon, Carole,Lonjon, Pauline,Turan-Zitouni, Gülhan,Dzieciolowski, Julia,Becker, Katja,Bénard, Lionel,Condon, Ciaran,Maillard, Ludovic,Martinez, Jean,Frère, Jean-Marie,Dideberg, Otto,Galleni, Moreno,Docquier, Jean-Denis,Hernandez, Jean-Fran?ois

, p. 972 - 985 (2017/06/27)

Metallo-β-lactamases (MBLs) cause resistance of Gram-negative bacteria to β-lactam antibiotics and are of serious concern, because they can inactivate the last-resort carbapenems and because MBL inhibitors of clinical value are still lacking. We previously identified the original binding mode of 4-amino-2,4-dihydro-5-(2-methylphenyl)-3H-1,2,4-triazole-3-thione (compound IIIA) within the dizinc active site of the L1 MBL. Herein we present the crystallographic structure of a complex of L1 with the corresponding non-amino compound IIIB (1,2-dihydro-5-(2-methylphenyl)-3H-1,2,4-triazole-3-thione). Unexpectedly, the binding mode of IIIB was similar but reverse to that of IIIA. The 3 D structures suggested that the triazole–thione scaffold was suitable to bind to the catalytic site of dizinc metalloenzymes. On the basis of these results, we synthesized 54 analogues of IIIA or IIIB. Nineteen showed IC50 values in the micromolar range toward at least one of five representative MBLs (i.e., L1, VIM-4, VIM-2, NDM-1, and IMP-1). Five of these exhibited a significant inhibition of at least four enzymes, including NDM-1, VIM-2, and IMP-1. Active compounds mainly featured either halogen or bulky bicyclic aryl substituents. Finally, some compounds were also tested on several microbial dinuclear zinc-dependent hydrolases belonging to the MBL-fold superfamily (i.e., endonucleases and glyoxalase II) to explore their activity toward structurally similar but functionally distinct enzymes. Whereas the bacterial tRNases were not inhibited, the best IC50 values toward plasmodial glyoxalase II were in the 10 μm range.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 709653-55-4