7342-00-9Relevant articles and documents
Cobalt-Mediated Decarboxylative/Desilylative C?H Activation/Annulation Reaction: An Efficient Approach to Natural Alkaloids and New Structural Analogues
Hai, Li,Lai, Ruizhi,Lv, Shan,Nie, Ruifang,Wu, Yong,Yang, Zhongzhen,chen, Kang
, (2022/02/03)
A Co(II)-mediated decarboxylative/desilylative C?H activation/annulation reaction for the efficient synthesis of 3-arylisoquinolines has been developed. Using alkynyl carboxylic acid and alkynyl silane as terminal alkyne precursors, providing straightforw
Organocatalytic Strategy for the Fixation of CO2via Carboxylation of Terminal Alkynes
Shi, Jun-Bin,Bu, Qingqing,Liu, Bin-Yuan,Dai, Bin,Liu, Ning
, p. 1850 - 1860 (2021/01/14)
An organocatalytic strategy for the direct carboxylation of terminal alkynes with CO2 has been developed. The combined use of a bifunctional organocatalyst and Cs2CO3 resulted in a robust catalytic system for the preparation of a range of propiolic acid derivatives in high yields with broad substrate scope using CO2 at atmospheric pressure under mild temperatures (60 °C). This work has demonstrated that this organocatalytic method offers a competitive alternative to metal catalysis for the carboxylation of terminal alkynes and CO2. In addition, this protocol was suitable for the three-component carboxylation of terminal alkynes, alkyl halides, and CO2.
Microwave-assisted fabrication of a mixed-ligand [Cu4(μ3-OH)2]-cluster-based metal–organic framework with coordinatively unsaturated metal sites for carboxylation of terminal alkynes with carbon dioxide
Wang, Wen-Jing,Sun, Zhong-Hua,Chen, Sheng-Chun,Qian, Jun-Feng,He, Ming-Yang,Chen, Qun
, (2021/05/24)
The development of efficient and stable metal–organic framework (MOF) catalysts with coordinatively unsaturated metal sites for modern organic synthesis is greatly important. Herein, a robust [Cu4(μ3-OH)2]-cluster-based MOF (Cu-MOF) with a mixed-ligand system was successfully fabricated by a microwave-assisted method under mild conditions. The as-prepared Cu-MOF catalyst possessing unsaturated Cu (II) sites exhibited excellent catalytic activity toward the direct carboxylation of 1-ethynylbenzene with CO2, and various propiolic acid derivatives were synthesized in moderate to good yields under optimized reaction conditions. Furthermore, the catalyst remained stable and could be easily recycled for five sequential runs without incredible decrease in catalytic efficiency.
Oxidant- and additive-free simple synthesis of 1,1,2-triiodostyrenes by one-pot decaroboxylative iodination of propiolic acids
Ghosh, Subhankar,Ghosh, Rajat,Chattopadhyay, Shital K.
supporting information, (2020/09/15)
A metal- and oxidant-free facile synthesis of a range of 1,1,2-triiodostryrene derivatives has been developed which utilizes a simple decarboxylative triiodination of propiolic acids using molecular iodine and sodium acetate in a one-pot manner. Electron-
Visible light induced 3-position-selective addition of arylpropiolic acids with ethersviaC(sp3)-H functionalization
Luo, Jun,Wan, Zi-Juan,Yuan, Xiao-Feng
supporting information, p. 3258 - 3262 (2020/05/14)
Although the 2-position-selective decarboxylative coupling or addition of arylpropiolic acids with cyclic ethers has been intensively investigated, selective functionalization of arylpropiolic acids at the 3-position is still a big challenge. Herein, an i
Visible Light-Catalyzed Decarboxylative Alkynylation of Arenediazonium Salts with Alkynyl Carboxylic Acids: Direct Access to Aryl Alkynes by Organic Photoredox Catalysis
Yang, Liangfeng,Li, Haifeng,Du, Yijun,Cheng, Kai,Qi, Chenze
, p. 5030 - 5041 (2019/11/03)
A convenient method mediated by photoredox catalysis is developed for the direct construction of aryl alkynes. Readily available aromatic diazonium salts have been utilized as the aryl radical source to couple alkynyl carboxylic acids to feature the decarboxylative arylation. A wide range of substrates are amenable to this protocol with broad functional group tolerance, and diversely-functionalized aryl alkynes could be synthesized under mild, neutral and transition metal-free reaction conditions using visible light irradiation. Alongside synthetic sustainability associated with the photocatalytic and transition metal-free operation, another key point of this method is that the organic dye catalyst acts as an excited-state reductant, thus establishing the quenching cycle for radical addition and decarboxylative elimination. (Figure presented.).
NiCl2-catalyzed radical cross decarboxylative coupling between arylpropiolic acids and cyclic ethers
Wan, Zi-juan,Wang, Jin-yuan,Luo, Jun
supporting information, p. 613 - 616 (2019/01/29)
A direct alkenylation of cyclic ethers via radical cross decarboxylative coupling process catalyzed by NiCl2 and using DTBP as radical initiator and oxidant was developed. A variety of arylpropiolic acids and cyclic ethers were transformed into the corresponding 2-arylvinyl cyclic ethers in moderate to excellent yields. Mechanistic experiments were conducted to determine the nature of the reaction intermediates, and a plausible reaction mechanism involving NiCl2-promoted radical process was proposed.
Atom Transfer Oxidative Radical Cascade of Aryl Alkynoates towards 1,1-Dichalcogenide Olefins
Sahoo, Harekrishna,Ramakrishna, Isai,Mandal, Anup,Baidya, Mahiuddin
supporting information, p. 4549 - 4552 (2019/07/31)
An oxidative trifunctionalization of aryl alkynoates has been devised via the chalcogenide radical triggered intramolecular 1,4-aryl migration/decarboxylation cascade to prepare 1,1-dichalcogenide tetrasubstituted alkenes in high yields (up to 98 %). This operationally simple reaction proceeds under metal-free conditions, can be executed on gram scale, and highlights formal 1,1-difunctionalization of alkynes. Synthetic potential of this protocol was demonstrated through a twofold cascade rearrangement to access highly conjugated tetra-selenylated alkenes along with a cross-dehydrogenative annulation to prepare fluorene derivative.
Rhodium-catalyzed enantioselective decarboxylative alkynylation of allenes with arylpropiolic acids
Grugel, Christian P.,Breit, Bernhard
, p. 1066 - 1069 (2018/02/23)
A rhodium-catalyzed chemo-, regio-, and enantioselective intermolecular decarboxylative alkynylation of terminal allenes with arylpropiolic acids is reported. Employing a Rh(I)/(R)-Tol-BINAP catalytic system, branched allylic 1,4-enynes were obtained under mild conditions. The overall utility of this protocol is exemplified by a broad functional group compatibility.
Carboxylation of Terminal Alkynes with Carbon Dioxide Catalyzed by an In Situ Ag2O/N-Heterocyclic Carbene Precursor System
Yuan, Ye,Chen, Cheng,Zeng, Cheng,Mousavi, Bibimaryam,Chaemchuen, Somboon,Verpoort, Francis
, p. 882 - 887 (2017/03/13)
A carboxylation of terminal alkynes with carbon dioxide (CO2) at ambient conditions was developed in situ using a series of N-heterocyclic carbene (NHC) precursors and Ag2O. The unique structure of NHCs largely increases the solubility of active Ag species and meanwhile activates CO2 by forming the NHC–CO2 adduct. This novel catalytic system demonstrated quite low Ag loading, very high activities, wide substrate generality and excellent tolerance for a variety of functionalities. In addition, avoiding cumbersome synthesis procedures, processing, and reserving of the photosensitive Ag complex, this system could be stored and operated as straightforward as the inorganic Ag salt catalysts.