73568-35-1Relevant articles and documents
Synthesis, crystal structure, anticancer and molecular docking studies of quinolinone-thiazolidinone hybrid molecules
Kumar, Vasantha,Rai, Vaishali M.,Udupi, Vishwanatha,Shivalingegowda, Naveen,Pai, Vinitha R.,Krishnappagowda, Lokanath Neratur,Poojary, Boja
, p. 793 - 808 (2021/08/12)
A new series of quinolone-thiazolidinone hybrid molecules 8a-o were prepared. Quinoline compounds were synthesized by Meth-Cohn synthesis and were condensed with 2,3-disubstituted thiazolidinone. These molecules were screened for their anticancer activities against MDA-MB-231 and MCF-7 cell line using MTT assay. Potent compounds were tested for their cytotoxicity on normal HEK 293 cell lines and most potent compound was tested for its cell cycle analysis. Molecular docking and molecular dynamic studies were performed on human N-acetyl transferase (hNAT-1) protein using Schrodinger molecular docking toolkit. Compound 8n emerged as potent with IC50 8.16?μM against MDA-MB-231 cell line followed by 8e with IC50 17.68?μM. Compound 8n arrested cell cycle at G2/M phase and was non-toxic to human normal kidney cell line. The potent compound 8n binds well with human NAT-1 protein with remarkable hydrogen bonding and π–π interactions. Molecular dynamic studies of 8n further confirm the target for these molecules. Target quinolinone-thiazolidinones were found to be new class of compounds targeting hNAT-1 and can serve as new lead compounds in drug discovery.
The improvement of photovoltaic performance of quinoline-based dye-sensitized solar cells by modification of the auxiliary acceptors
?i?man, ?lkay,Arkan, Burcu,Arslan, Bar?? Se?kin,Avc?, Davut,Derin, Yavuz,Gezgin, Merve,Nebio?lu, Mehmet,Tutar, Ahmet
, (2020/10/07)
Three new dyes containing diphenylamine as electron donor, benzene (BIM1), benzothiadiazole (BTD) (BIM2) and N-ethylhexylbenzotriazole (BTZ) (BIM3) as auxiliary electron acceptors, quinoline as π-bridge and cyanoacrylic acid as anchoring group were synthesized in D-A-π-A structure for use in dye-sensitized solar cells (DSSCs). The optical, electrochemical, theoretical and photovoltaic methods were performed to understand the auxiliary acceptor influence on the performance of these dyes. Compared to the other dyes, the DSSC with dye BIM3 slightly increases the open circuit voltage (Voc) owing to the retardation of charge recombination by BTZ. However, replacement of benzene or BTZ by BTD unit causes a large red shift of the absorption spectra, leading BIM2 cell to produce the highest short circuit current density (Jsc). Thus, among the three D-A-π-A dyes, BIM2 is determined to be the most efficient dye, which reached a Voc of 0.627 V and Jsc of 11.53 mA cm–2, corresponding to an overall power conversion efficiency of 5.21 % in the presence of chenodeoxycholic acid (CDCA) as the coadsorbent. These results suggest that the insertion of benzothiadiazole as auxiliary acceptor into quinoline-based D-A-π-A dyes can effectively improve photovoltaic performance of DSSCs.
Microwave assisted regioselective synthesis of quinoline appended triazoles as potent anti-tubercular and antifungal agents via copper (I) catalyzed cycloaddition
Nesaragi, Aravind R.,Kamble, Ravindra R.,Bayannavar, Praveen K.,Shaikh, Saba Kauser J.,Hoolageri, Swati R.,Kodasi, Barnabas,Joshi, Shrinivas D.,Kumbar, Vijay M.
supporting information, (2021/04/12)
Quinolin-3-yl-methyl-1,2,3-triazolyl-1,2,4-triazol-3(4H)-ones 8j-v were synthesized by click chemistry as an ultimate tactic where [3 + 2] cycloaddition of azides with terminal alkynes has been evolved. Herein, we are inclined to divulge the implication and prevalence of CuSO4·5H2O and THF/water promoted [3 + 2] cycloaddition reactions. The foremost supremacy of this method are transitory reaction times, facile workup, excellent yields (88–92%) with exorbitant purity and regioselective single product formation both under conventional and microwave method. Docking studies illustrated strong binding interactions with enzyme InhA-D148G (PDB ID: 4DQU) by means of high C-score values. The anti-tubercular and antifungal screening of synthesized compounds proclaimed promising activity. The in vitro and in silico studies imply that these triazoles appended quinolines may acquire the ideal structural prerequisites for auxiliary expansion of novel therapeutic agents.
Enantioselective synthesis of functionalized 1,4-dihydropyrazolo-[4′,3′:5,6]pyrano[2,3-: B] quinolines through ferrocenyl-phosphine-catalyzed annulation of modified MBH carbonates and pyrazolones
Li, Jingyi,Ling, Fei,Lu, Yin-Jie,Shao, Bingxuan,Xiao, Xiao,Yang, Zehui,Zhong, Weihui
supporting information, p. 4690 - 4693 (2021/05/19)
An enantioselective synthesis of highly functionalized 1,4-dihydropyrazolo[4′,3′:5,6]pyrano[2,3-b]quinolines from modified MBH carbonates and pyrazolones via a chiral phosphine-mediated alkylation/annulation sequence has been realized. The chiral dihydropyrano[2,3-c]pyrazoles bearing bio-active condensed heterocycles were facilely formed in good chemical yields and with high to excellent enantioselectivity by utilizing low catalyst loading.
Design, synthesis, and molecular docking study of novel quinoline-based bis-chalcones as potential antitumor agents
Insuasty, Daniel,García, Stephanie,Abonia, Rodrigo,Insuasty, Braulio,Quiroga, Jairo,Nogueras, Manuel,Cobo, Justo,Borosky, Gabriela L.,Laali, Kenneth K.
, (2021/06/01)
A novel series of quinoline-based symmetrical and unsymmetrical bis-chalcones was synthesized via a Claisen–Schmidt condensation reaction between 3-formyl-quinoline/quinolone derivatives with acetone or arylidene acetones, respectively, by using KOH/MeOH/H2O as a reaction medium. Twelve of the obtained compounds were evaluated for their in vitro cytotoxic activity against 60 different human cancer cell lines according to the National Cancer Institute protocol. Among the screened compounds, the symmetrical N-butyl bis-quinolinyl-chalcone 14g and the unsymmetrical quinolinyl-bis-chalcone 17o bearing a 7-chloro-substitution on the N-benzylquinoline moiety and 4-hydroxy-3-methoxy substituent on the phenyl ring, respectively, exhibited the highest overall cytotoxicity against the evaluated cell lines with a GI50 range of 0.16–5.45 μM, with HCT-116 (GI50 = 0.16) and HT29 (GI50 = 0.42 μM) (colon cancer) representing best-case scenarios. Notably, several GI50 values for these compounds were lower than those of the reference drugs doxorubicin and 5-FU. Docking studies performed on selected derivatives yielded very good binding energies in the active site of proteins that participate in key carcinogenic pathways.
Synthesis of 2-methoxy-3-(thiophen-2-ylmethyl)quinoline containing amino carbinols as antitubercular agents
Karkara, Bidhu Bhusan,Mishra, Shashank Shekhar,Panda, Gautam,Singh, Bhupendra N.
, (2020/03/30)
We have designed and synthesized 2-methoxy-3-(thiophen-2-ylmethyl)quinoline containing amino carbinols as possible anti-tubercular agents to combat the disease. These molecules were synthesized by tethering amino ether linkage with hydroxyl group to diarylquinoline skeleton; hydroxyl and amine chains were engrafted on diaryl ring. They were evaluated against strain (H37Ra) of Mycobacterium tuberculosis and most of compounds showed in vitro antitubercular activity. Two compounds having diaryl quinoline hydroxyl amino ether scaffold and three compounds having diaryl amino alkyl carbinol core showed activities at 6.25 μg/mL. This study explores diaryl carbinol prototype as inhibitor against Mycobacterium tuberculosis.
Coupling-Isomerization-Cycloisomerization Reaction (CICIR) – An Unexpected and Efficient Domino Approach to Luminescent 2-(Hydroxymethylene)indenones
Ghazvini, Helya Janatian,Armaghan, Mahsa,Janiak, Christoph,Balalaie, Saeed,Müller, Thomas J. J.
supporting information, p. 7058 - 7062 (2019/11/11)
A Pd/Cu-catalyzed base mediated domino process of ortho-halo (hetero)aryl carboxaldehydes and propargyl alcohols unexpectedly furnish 2-(hydroxymethylene)indenones in good to excellent yield as a result of a coupling-isomerization-cycloisomerization reaction (CICIR). In addition, the title compounds constitute an interesting class of luminophores with tunable emission solvatochromicity.
Synthesis, antibacterial activity and docking studies of substituted quinolone thiosemicarbazones
Govender, Hogantharanni,Mocktar, Chunderika,Kumalo, Hezekiel M.,Koorbanally, Neil A.
, p. 1074 - 1081 (2019/06/10)
Fifteen 2-quinolone thiosemicarbazone derivatives of which eleven were new, were synthesized at room temperature. The key intermediate was the quinolone carbaldehyde, from which thiosemicarbazones were formed by the reaction of thiosemicarbazides with the aldehyde moiety. The structures of the synthesized compounds were elucidated by 1D and 2D-NMR spectroscopy and mass spectrometry. The synthesized compounds showed antibacterial activity with MBCs in the range 0.80 to 36.49 mM against Staphylococcus aureus, Staphylococcus aureus Rosenbach (MRSA), Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli and Salmonella typhimurium. The best activity was seen when a larger halogen such as chlorine and bromine were substituted at C-6 on the quinolone scaffold and when a planar phenyl group was present on the thiosemicarbazone moiety. Activity was reduced when a smaller fluorine atom was present at C-6 or when a methyl group was attached to the thiosemicarbazone. This group of compounds showed a high negative binding affinity, which suggested promising antimcrobial activity. The 6-chloro derivative with a phenyl group on the thiosemicarbazone had the greatest negative binding affinity.
Discovery and optimization of thienopyridine derivatives as novel urea transporter inhibitors
Zhao, Yan,Li, Min,Li, Bowen,Zhang, Shun,Su, Aoze,Xing, Yongning,Ge, Zemei,Li, Runtao,Yang, Baoxue
, p. 131 - 142 (2019/04/08)
Urea transporters (UTs) play an important role in the urine concentrating mechanism and are recognized as novel targets for developing small molecule inhibitors with salt-sparing diuretic activity. Thienoquinoline derivatives, a class of novel UT-B inhibitors identified by our group, play a significant diuresis in animal model. However, the poor solubility and low bioavailability limited its further development. To overcome these shortcomings, the structure modification of thienoquinoline was carried out in this study, which led to the discovery of novel thienopyridine derivatives as specific urea transporter inhibitors. Further optimization obtained the promising preclinical candidate 8n with not only excellent inhibition effect on urea transporters and diuretic activity on rat model, but also suitable water solubility and Log P value.
Tetrazolylmethyl quinolines: Design, docking studies, synthesis, anticancer and antifungal analyses
Shaikh, Saba Kauser J.,Kamble, Ravindra R.,Somagond, Shilpa M.,Devarajegowda,Dixit, Sheshagiri R.,Joshi, Shrinivas D.
supporting information, p. 258 - 273 (2017/02/15)
A new series of 2,5 and 1,5-regioisomers of the tetrazolyl group viz., 3-[(5-benzyl/benzylthio-2H-tetrazol-2-yl) methyl]-2-chloro-6-substituted quinoline 6h-q and 3-[(5-benzyl/benzylthio-1H-tetrazol-1-yl) methyl]-2-chloro-6-substituted quinolines 7h-q were synthesized. Docking studies of all these compounds with DNA as target using PDB: 1AU5 and 453D revealed that the compounds 6h and 6i act as covalent cross linker on the DNA helix of the former and intercalate the latter both with higher C score values. Another set of docking studies in the active pocket of dihydrofolate reductase and N-myristoyl transferase as targets to assess antifungal activity revealed that compounds 6k, 6l, 6p and 7q (with bromo and fluro substituents) showcases different binding modes and hydrogen bonding. Further, the compounds were screened for anticancer activity (primary cytotoxicity) against NCI-60 Human tumor cell line at a single high dose (10?5M) concentration assay. Among the tested compounds, 6h has shown 99.28% of GI against Melanoma (SK-MEL-5) and compound 6i has shown 97.56% of GI against Breast Cancer (T-47D). Further, in vitro antifungal assay against A. fumigatus and C. albicans for these compounds 6h-q and 7h-q revealed potential to moderate activities as compared to the standard.