Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7409-18-9

Post Buying Request

7409-18-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7409-18-9 Usage

Synthesis Reference(s)

Journal of the American Chemical Society, 82, p. 681, 1960 DOI: 10.1021/ja01488a045

Check Digit Verification of cas no

The CAS Registry Mumber 7409-18-9 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,4,0 and 9 respectively; the second part has 2 digits, 1 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 7409-18:
(6*7)+(5*4)+(4*0)+(3*9)+(2*1)+(1*8)=99
99 % 10 = 9
So 7409-18-9 is a valid CAS Registry Number.

7409-18-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name (3-nitrophenyl)methanamine

1.2 Other means of identification

Product number -
Other names 3-Nitro-benzylamin

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7409-18-9 SDS

7409-18-9Relevant articles and documents

Scope and limitations of reductive amination catalyzed by half-sandwich iridium complexes under mild reaction conditions

Nguyen, Dat P.,Sladek, Rudolph N.,Do, Loi H.

supporting information, (2020/07/15)

The conversion of aldehydes and ketones to 1° amines could be promoted by half-sandwich iridium complexes using ammonium formate as both the nitrogen and hydride source. To optimize this method for green chemical synthesis, we tested various carbonyl substrates in common polar solvents at physiological temperature (37 °C) and ambient pressure. We found that in methanol, excellent selectivity for the amine over alcohol/amide products could be achieved for a broad assortment of carbonyl-containing compounds. In aqueous media, selective reduction of carbonyls to 1° amines was achieved in the absence of acids. Unfortunately, at Ir catalyst concentrations of 1 mM in water, reductive amination efficiency dropped significantly, which suggest that this catalytic methodology might be not suitable for aqueous applications where very low catalyst concentration is required (e.g., inside living cells).

Nano-Fe3O4@SiO2-SO3H: A magnetic, reusable solid-acid catalyst for solvent-free reduction of oximes to amines with the NaBH3CN/ZrCl4 system

Sadighnia, Leila,Zeynizadeh, Behzad,Karami, Shiva,Abdollahi, Mohammad

, p. 535 - 542 (2019/01/04)

In this study, the immobilization of sulfonic acid on silica-layered magnetite was carried out by the reaction of ClSO3H with silica-layered magnetite. The prepared magnetic nanoparticles of Fe3O4@SiO2-SO3H were then characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, and transmission electron microscopy. The sulfonated nanocomposite exhibited excellent catalytic activity and reusability in the reduction of various aldoximes and ketoximes with NaBH3CN in the presence of ZrCl4. All reactions were carried out under solvent-free conditions (r.t. or 75–80°C) within 3–70 min to afford amines in high to excellent yields.

Green and convenient protocols for the efficient reduction of nitriles and nitro compounds to corresponding amines with NaBH4 in water catalyzed by magnetically retrievable CuFe2O4 nanoparticles

Zeynizadeh, Behzad,Mohammad Aminzadeh, Farkhondeh,Mousavi, Hossein

, (2019/03/23)

Abstract: In this study, firstly, CuFe2O4 nanoparticles were prepared by a simple operation. The structure of the mentioned nanoparticles was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma-optical emission spectrometry, vibrating sample magnetometer and also Brunauer–Emmett–Teller and Barrett–Joyner–Halenda analyses. The prepared magnetically copper ferrite nanocomposite was successfully applied as a simple, cost-effective, practicable, and recoverable catalyst on the green, highly efficient, fast, base-free, and ligand-free reduction of nitriles and also on the affordable and eco-friendly reduction of nitro compounds with the broad substrate scope to the corresponding amines with NaBH4 in water at reflux in high to excellent yields. Graphical abstract: [Figure not available: see fulltext.].

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7409-18-9