Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7443-55-2

Post Buying Request

7443-55-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7443-55-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 7443-55-2 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,4,4 and 3 respectively; the second part has 2 digits, 5 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 7443-55:
(6*7)+(5*4)+(4*4)+(3*3)+(2*5)+(1*5)=102
102 % 10 = 2
So 7443-55-2 is a valid CAS Registry Number.
InChI:InChI=1/C7H14O/c1-6-3-2-4-7(8)5-6/h6-8H,2-5H2,1H3/t6?,7-/m1/s1

7443-55-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name TRANS-3-METHYLCYCLOHEXANOL

1.2 Other means of identification

Product number -
Other names Cyclohexanol, 3-methyl-, trans-(±)-

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7443-55-2 SDS

7443-55-2Relevant articles and documents

HYDROXYL-DIRECTED OLEFIN HYDROGENATION WITH IRIDIUM CATALYSTS. THE DOCUMENTATION OF CATALYST : SUBSTRATE STOICHIOMETRY AS A VARIABLE IN REACTION DIASTEREOSELECTION.

Evans, David A.,Morrissey, Michael M.

, p. 4637 - 4640 (1984)

The present investigation documents the fact that hydroxyl-directed hydrogenation of cyclic and acyclic olefinic alcohols with the cationic iridium catalyst, Ir(COD)py(PCy3)PF6, exhibits reaction diastereoselectivity which is dependent upon catalyst-substrate stoichiometry.

Expedient Synthesis of Bridged Bicyclic Nitrogen Scaffolds via Orthogonal Tandem Catalysis

Bheemireddy, Narendraprasad Reddy,Biswas, Sovan,Evano, Gwilherm,Maes, Bert U. W.,Van Steijvoort, Ben F.,Waeterschoot, Marjo

, p. 21988 - 21996 (2021/08/13)

Bridged nitrogen bicyclic skeletons have been accessed via unprecedented site- and diastereoselective orthogonal tandem catalysis from readily accessible reactants in a step economic manner. Directed Pd-catalyzed γ-C(sp3)-H olefination of aminocyclohexane with gem-dibromoalkenes, followed by a consecutive intramolecular Cu-catalyzed amidation of the 1-bromo-1-alkenylated product delivers the interesting normorphan skeleton. The tandem protocol can be applied on substituted aminocyclohexanes and aminoheterocycles, easily providing access to the corresponding substituted, aza- and oxa-analogues. The Cu catalyst of the Ullmann-Goldberg reaction additionally avoids off-cycle Pd catalyst scavenging by alkenylated reaction product. The picolinamide directing group stabilizes the enamine of the 7-alkylidenenormorphan, allowing further product post functionalizations. Without Cu catalyst, regio- and diastereoselective Pd-catalyzed γ-C(sp3)-H olefination is achieved.

SN2 Reaction of Diarylmethyl Anions at Secondary Alkyl and Cycloalkyl Carbons

Shinohara, Riku,Ogawa, Narihito,Kawashima, Hidehisa,Wada, Kyohei,Saito, Shun,Yamazaki, Takashi,Kobayashi, Yuichi

, p. 1461 - 1478 (2019/01/25)

The substitution reaction of the diethyl allylic and propargylic phosphates with Ar2CH anions was applied to sec-alkyl phosphates to compare reactivity and stereoselectivity. However, the substitution took place on the ethyl carbon of the diethyl phosphate group. We then found that the diphenyl phosphate leaving group ((PhO)2PO2) was suited for the substitution at the sec-alkyl carbon. Enantioenriched diphenyl sec-alkyl phosphates with different substituents (Me, Et, iPr) on the vicinal position underwent the substitution reaction with almost complete inversion (>99% enantiospecificity). The substitution reactions of cyclohexyl phosphates possessing cis or trans substituents (Me and/or tBu) at the C4, C3, and C2 positions of the cyclohexane ring were also studied to observe the difference in reactivity among the cis and trans isomers. A transition-state model with the phosphate leaving group ((PhO)2PO2) in the axial position was proposed to explain the difference. This model was supported by computational calculation of the virtual substitution reaction of the structurally simpler “dimethyl” cyclohexyl phosphates (leaving group = (MeO)2PO2) with MeLi. Furthermore, the calculation unexpectedly indicated higher propensity of (PhO)2PO2 as a leaving reactivity than alkyl phosphate groups such as (MeO)2PO2 and (iPrO)2PO2.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7443-55-2