Welcome to LookChem.com Sign In|Join Free

CAS

  • or

761390-58-3

Post Buying Request

761390-58-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

761390-58-3 Usage

General Description

"(R)-1-(3-Fluorophenyl)ethylamine is a chemical compound characterized by its structure of a fluorine atom bonded to an aromatic phenyl ring, attached to an ethylamine chain with an R-configuration. The R-configuration indicates the orientation of the atoms in the molecule. It is an important intermediate for the synthesis of a variety of organic compounds, including pharmaceuticals and agrochemicals. Its properties can be influenced by temperature, pressure, and other external factors. As with many chemical compounds, it must be handled with care to prevent potential health and safety risks.

Check Digit Verification of cas no

The CAS Registry Mumber 761390-58-3 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 7,6,1,3,9 and 0 respectively; the second part has 2 digits, 5 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 761390-58:
(8*7)+(7*6)+(6*1)+(5*3)+(4*9)+(3*0)+(2*5)+(1*8)=173
173 % 10 = 3
So 761390-58-3 is a valid CAS Registry Number.

761390-58-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name (R)-1-(3-Fluorophenyl)ethanamine

1.2 Other means of identification

Product number -
Other names (1R)-1-(3-fluorophenyl)ethanamine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:761390-58-3 SDS

761390-58-3Relevant articles and documents

Generation of amine dehydrogenases with increased catalytic performance and substrate scope from ε-deaminating L-Lysine dehydrogenase

Tseliou, Vasilis,Knaus, Tanja,Masman, Marcelo F.,Corrado, Maria L.,Mutti, Francesco G.

, (2019/08/22)

Amine dehydrogenases (AmDHs) catalyse the conversion of ketones into enantiomerically pure amines at the sole expense of ammonia and hydride source. Guided by structural information from computational models, we create AmDHs that can convert pharmaceutically relevant aromatic ketones with conversions up to quantitative and perfect chemical and optical purities. These AmDHs are created from an unconventional enzyme scaffold that apparently does not operate any asymmetric transformation in its natural reaction. Additionally, the best variant (LE-AmDH-v1) displays a unique substrate-dependent switch of enantioselectivity, affording S- or R-configured amine products with up to >99.9% enantiomeric excess. These findings are explained by in silico studies. LE-AmDH-v1 is highly thermostable (Tm of 69 °C), retains almost entirely its catalytic activity upon incubation up to 50 °C for several days, and operates preferentially at 50 °C and pH 9.0. This study also demonstrates that product inhibition can be a critical factor in AmDH-catalysed reductive amination.

Asymmetric Synthesis of Chiral Primary Amines by Ruthenium-Catalyzed Direct Reductive Amination of Alkyl Aryl Ketones with Ammonium Salts and Molecular H2

Tan, Xuefeng,Gao, Shuang,Zeng, Weijun,Xin, Shan,Yin, Qin,Zhang, Xumu

supporting information, p. 2024 - 2027 (2018/02/19)

A ruthenium/C3-TunePhos catalytic system has been identified for highly efficient direct reductive amination of simple ketones. The strategy makes use of ammonium acetate as the amine source and H2 as the reductant and is a user-friendly and operatively simple access to industrially relevant primary amines. Excellent enantiocontrol (>90% ee for most cases) was achieved with a wide range of alkyl aryl ketones. The practicability of this methodology has been highlighted by scalable synthesis of key intermediates of three drug molecules. Moreover, an improved synthetic route to the optimal diphosphine ligand C3-TunePhos is also presented.

Stereoselective amination of racemic sec-alcohols through sequential application of laccases and transaminases

Martínez-Montero, Lía,Gotor, Vicente,Gotor-Fernández, Vicente,Lavandera, Iván

, p. 474 - 480 (2017/06/23)

A one-pot/two-step bienzymatic asymmetric amination of secondary alcohols is disclosed. The approach is based on a sequential strategy involving the use of a laccase/TEMPO catalytic system for the oxidation of alcohols into ketone intermediates, and their following transformation into optically enriched amines by using transaminases. Individual optimizations of the oxidation and biotransamination reactions have been carried out, studying later their applicability in a concurrent process. Therefore, 17 racemic (hetero) aromatic sec-alcohols with different substitutions in the aromatic ring have been converted into enantioenriched amines with good to excellent selectivities (90-99% ee) and conversion values (67-99%). The scalability of the process was also demonstrated when two different amine donors were used in the transamination step, such as isopropylamine and cis-2-buten-1,4-diamine. Satisfyingly, both sacrificial amine donors can shift the equilibrium toward the amine formation, leading to the corresponding isolated enantioenriched amines with good to excellent results.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 761390-58-3