764-67-0Relevant articles and documents
P450Jα: A New, Robust and α-Selective Fatty Acid Hydroxylase Displaying Unexpected 1-Alkene Formation
Armbruster, Julia,Steinmassl, Mathilde,Müller Bogotá, Christina A.,Berg, Gabriele,Nidetzky, Bernd,Dennig, Alexander
, p. 15910 - 15921 (2020/10/29)
Oxyfunctionalization of fatty acids (FAs) is a key step in the design of novel synthetic pathways for biobased/biodegradable polymers, surfactants and fuels. Here, we show the isolation and characterization of a robust FA α-hydroxylase (P450Jα) which catalyses the selective conversion of a broad range of FAs (C6:0-C16:0) and oleic acid (C18:1) with H2O2 as oxidant. Under optimized reaction conditions P450Jα yields α-hydroxy acids all with >95 % regioselectivity, high specific activity (up to 15.2 U mg?1) and efficient coupling of oxidant to product (up to 85 %). Lauric acid (C12:0) turned out to be an excellent substrate with respect to productivity (TON=394 min?1). On preparative scale, conversion of C12:0 reached 83 % (0.9 g L?1) when supplementing H2O2 in fed-batch mode. Under similar conditions P450Jα allowed further the first biocatalytic α-hydroxylation of oleic acid (88 % conversion on 100 mL scale) at high selectivity and in good yields (1.1 g L?1; 79 % isolated yield). Unexpectedly, P450Jα displayed also 1-alkene formation from shorter chain FAs (≤C10:0) showing that oxidative decarboxylation is more widely distributed across this enzyme family than reported previously.
Preparative Asymmetric Synthesis of Canonical and Non-canonical α-amino Acids Through Formal Enantioselective Biocatalytic Amination of Carboxylic Acids
Dennig, Alexander,Blaschke, Fabio,Gandomkar, Somayyeh,Tassano, Erika,Nidetzky, Bernd
supporting information, (2019/02/09)
Chemical and biocatalytic synthesis of non-canonical α-amino acids (ncAAs) from renewable feedstocks and using mild reaction conditions has not efficiently been solved. Here, we show the development of a three-step, scalable and modular one-pot biocascade for linear conversion of renewable fatty acids (FAs) into enantiopure l-α-amino acids. In module 1, selective α-hydroxylation of FAs is catalyzed by the P450 peroxygenase P450CLA. By using an automated H2O2 supplementation system, efficient conversion (46 to >99%; TTN>3300) of a broad range of FAs (C6:0 to C16:0) into valuable α-hydroxy acids (α-HAs; >90% α-selective) is shown on preparative scale (up to 2.3 g L?1 isolated product). In module 2, a redox-neutral hydrogen borrowing cascade (alcohol dehydrogenase/amino acid dehydrogenase) allowed further conversion of α-HAs into l-α-AAs (20 to 99%). Enantiopure l-α-AAs (e.e. >99%) including the pharma synthon l-homo-phenylalanine can be obtained at product titers of up to 2.5 g L?1. Based on renewables and excellent atom economy, this biocascade is among the shortest and greenest synthetic routes to structurally diverse and industrially relevant ncAAs. (Figure presented.).
Preparative Asymmetric Synthesis of Canonical and Non-canonical a-amino Acids through Formal Enantioselective Biocatalytic Amination of Carboxylic Acids
Dennig, Alexander,Blaschke, Fabio,Gandomkar, Somayyeh,Tassano, Erika,Nidetzky, Bernd
supporting information, p. 1348 - 1358 (2019/10/28)
Chemical and biocatalytic synthesis of non-canonical a-amino acids (ncAAs) from renewable feedstocks and using mild reaction conditions has not efficiently been solved. Here, we show the development of a three-step, scalable and modular one-pot biocascade for linear conversion of renewable fatty acids (FAs) into enantiopure l-a-amino acids. In module 1, selective a-hydroxylation of FAs is catalyzed by the P450 peroxygenase P450CLA. By using an automated H2O2 supplementation system, efficient conversion (46 to >99%; TTN>3300) of a broad range of FAs (C6:0 to C16:0) into valuable a-hydroxy acids (a-HAs; >90% a-selective) is shown on preparative scale (up to 2.3 gL1 isolated product). In module 2, a redox-neutral hydrogen borrowing cascade (alcohol dehydrogenase/amino acid dehydrogenase) allowed further conversion of a-HAs into l-a-AAs (20 to 99%). Enantiopure l-a-AAs (e.e. >99%) including the pharma synthon l-homo-phenylalanine can be obtained at product titers of up to 2.5 gL1. Based on renewables and excellent atom economy, this biocascade is among the shortest and greenest synthetic routes to structurally diverse and industrially relevant ncAAs.
Personal care compositions comprising solid particles enterapped in a gel network
-
, (2008/06/13)
The present invention relates to a personal care composition comprising a three dimensional gel polymeric network comprising: a. a polymer; b. one or more solid particles that are entrapped within said polymer during polymerization of said polymer; and c. a solvent in which said polymer is dispersed. Another embodiment further includes at least one second colorant that is substantially similar to an at least one first colorant which is a solid particle and wherein said second colorant is dispersed within said composition but is not entrapped in said polymer and is separate and distinct from said network. In contrast, a third embodiment allows for the at least one second colorant to be substantially different from the at least one first colorant.
COSMETIC COMPOSITIONS CONTAINING A SILOXANE ELASTOMER
-
, (2008/06/13)
A skin treatment composition is provided which includes a crosslinked non-emulsifying siloxane elastomer, a volatile siloxane and at least 50% by weight of water. Inclusion of the elastomer provides a unique liquid/powdery feel when rubbed into the skin.
Cosmetic compositions
-
, (2008/06/13)
The present invention relates to pigmented emulsion cosmetic compositions containing emulsifying silicone elastomers that provide a natural appearance to the skin upon application. In particular, these cosmetic compositions are formulated such that agglomeration of the pigment upon application to the skin is minimized.
Cosmetic compositions
-
, (2008/06/13)
A skin treatment composition is provided which includes a crosslinked siloxane elastomer gel of specific yield point, a skin-conditioning agent, a volatile siloxane and water. Inclusions of the select elastomers provide improved uniform distribution of the pigments.
Anhydrous cosmetic compositions
-
, (2008/06/13)
An anhydrous skin treatment composition is provided which includes a crosslinked emulsifying siloxane elastomer, at least 20% humectant and a volatile siloxane. Inclusion of the elastomer provides a non-traditional smooth/silky feel to the skin upon application with a non-draggy rub in.
Cosmetic compositions
-
, (2008/06/13)
The invention relates to cosmetic compositions comprising a combination of non-emulsifying and emulsifying crosslinked siloxane elastomers.