Welcome to LookChem.com Sign In|Join Free

CAS

  • or

840-37-9

Post Buying Request

840-37-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

840-37-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 840-37-9 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 8,4 and 0 respectively; the second part has 2 digits, 3 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 840-37:
(5*8)+(4*4)+(3*0)+(2*3)+(1*7)=69
69 % 10 = 9
So 840-37-9 is a valid CAS Registry Number.

840-37-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-(2-nitrophenyl)-1,3-benzoxazole

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:840-37-9 SDS

840-37-9Relevant articles and documents

Heterogeneous palladium (II)-complexed dendronized polymer: A rare palladium catalyst for the one-pot synthesis of 2-arylbenzoxazoles

George, Smitha,Sreekumar, Krishnapillai

, (2020/12/14)

The palladium complex of dendronized amine polymer (EG–Gn–Pd, n = 0, 1 and 2) having ethylene glycol-initiated polyepichlorohydrin as core was synthesized on a Merrifield resin support and was well characterized. Generally, palladium catalysts are known for carbon–carbon coupling reactions. Here, a developed catalyst was found to be good for benzoxazole synthesis. Higher generation dendronized polymer (EG–G2–Pd) was found to be better catalyst over lower generation dendronized polymers. Moreover, dendronized polymers were found to be a better catalyst over dendrigraft polymers. The catalyst reusability was checked and good yield was obtained for five cycles.

In-vitro Anti-cancer assay and apoptotic cell pathway of newly synthesized benzoxazole-N-heterocyclic hybrids as potent tyrosine kinase inhibitors

Desai, Sulaksha,Desai, Vidya,Shingade, Sunil

supporting information, (2019/11/13)

A series of benzoxazole-N-heterocyclic hybrids have been synthesized by a one-pot strategy. Molecular docking study revealed that such compounds have the ability to inhibit enzyme protein tyrosine kinase. The findings of this work have been the successful synthesis of benzoxazole scaffolds, featuring hybrids of benzoxazole with quinoline and quinoxaline respectively. The molecular docking studies have showed these compounds to be inhibitors of tyrosine kinase enzyme which triggers growth of cancer cells. The cytotoxicity study of compounds 4a-f showed better potency against breast cancer cell lines MCF-7 and MDA-MB-231 in contrast to oral and lung cancer cell lines KB and A549. The tyrosine kinase activity was measured using Universal Tyrosine Kinase Assay kit using horseradish peroxide (HRP)-conjugated anti-phosphotyrosine kinase solution as a substrate. The compounds 4c exhibited maximum inhibition in the activity of enzyme tyrosine kinase with IC50 value 0.10 ± 0.16 μM, than other compounds which were studied and thus proved to be inhibitors of enzyme tyrosine kinase. The selective index of all four compounds was found out to be greater than two, indicating the non-toxic behaviour, i.e. good anti-cancer activity. Further, fluorescence microscopic study helped to characterize the mode of cell death, which was found to be late apoptosis as indicated by the orange fluorescence. The SAR analysis has also been carried out.

A Predictive Model for the Decarboxylation of Silver Benzoate Complexes Relevant to Decarboxylative Coupling Reactions

Crovak, Robert A.,Hoover, Jessica M.

supporting information, p. 2434 - 2437 (2018/02/28)

Decarboxylative coupling reactions offer an attractive route to generate functionalized arenes from simple and readily available carboxylic acid coupling partners, yet they are underutilized due to limitations in the scope of carboxylic acid coupling partner. Here we report that the field effect parameter (F) has a substantial influence on the rate of decarboxylation of well-defined silver benzoate complexes. This finding provides the opportunity to surpass current substrate limitations associated with decarboxylation and to enable widespread utilization of decarboxylative coupling reactions.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 840-37-9
  • ©2008 LookChem.com,License:ICP NO.:Zhejiang16009103 complaints:service@lookchem.com
  • [Hangzhou]86-571-87562588,87562561,87562573 Our Legal adviser: Lawyer