Welcome to LookChem.com Sign In|Join Free

CAS

  • or

85-32-5

Post Buying Request

85-32-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

85-32-5 Usage

Uses

Biochemical research, flavor potentiator (disodium salt).5-Guanylic Acid is a useful reagent for the chemo- and site-specific reductive amination of N2-guanine oligonucleotides.

Definition

The monophosphoric ester of guanine, i.e., the nucleotide containing guanine, d-ribose, and phosphoric acid. The phosphate may be esterified to either the 2, 3, or 5 carbon of ribose, yielding guanosine-2′-phosphate, guanosine-3′-phosphate, and guanosine-

Purification Methods

Crystallise it from water and dry it at 110o. [Beilstein 26 III/IV 3910.]

Check Digit Verification of cas no

The CAS Registry Mumber 85-32-5 includes 5 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 2 digits, 8 and 5 respectively; the second part has 2 digits, 3 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 85-32:
(4*8)+(3*5)+(2*3)+(1*2)=55
55 % 10 = 5
So 85-32-5 is a valid CAS Registry Number.

85-32-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name GMP

1.2 Other means of identification

Product number -
Other names 5 -GUANOSINEMONOPHOSPHATE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Food additives
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:85-32-5 SDS

85-32-5Relevant articles and documents

Biochemical characterization of recombinant guaA-encoded guanosine monophosphate synthetase (EC 6.3.5.2) from Mycobacterium tuberculosis H37Rv strain

Franco, Tathyana Mar A.,Rostirolla, Diana C.,Ducati, Rodrigo G.,Lorenzini, Daniel M.,Basso, Luiz A.,Santos, Diogenes S.

, p. 1 - 11 (2012)

Administration of the current tuberculosis (TB) vaccine to newborns is not a reliable route for preventing TB in adults. The conversion of XMP to GMP is catalyzed by guaA-encoded GMP synthetase (GMPS), and deletions in the Shiguella flexneri guaBA operon led to an attenuated auxotrophic strain. Here we present the cloning, expression, and purification of recombinant guaA-encoded GMPS from Mycobacterium tuberculosis (MtGMPS). Mass spectrometry data, oligomeric state determination, steady-state kinetics, isothermal titration calorimetry (ITC), and multiple sequence alignment are also presented. The homodimeric MtGMPS catalyzes the conversion of XMP, MgATP, and glutamine into GMP, ADP, PP i, and glutamate. XMP, NH4+, and Mg2+ displayed positive homotropic cooperativity, whereas ATP and glutamine displayed hyperbolic saturation curves. The activity of ATP pyrophosphatase domain is independent of glutamine amidotransferase domain, whereas the latter cannot catalyze hydrolysis of glutamine to NH3 and glutamate in the absence of substrates. ITC data suggest random order of binding of substrates, and PPi is the last product released. Sequence comparison analysis showed conservation of both Cys-His-Glu catalytic triad of N-terminal Class I amidotransferase and of amino acid residues of the P-loop of the N-type ATP pyrophosphatase family.

Characterization of complexes of nucleoside-5′-phosphorothioate analogues with zinc ions

Sayer, Alon Haim,Itzhakov, Yehudit,Stern, Noa,Nadel, Yael,Fischer, Bilha

, p. 10886 - 10896 (2013)

On the basis of the high affinity of Zn2+ to sulfur and imidazole, we targeted nucleotides such as GDP-β-S, ADP-β-S, and AP3(β-S)A, as potential biocompatible Zn2+-chelators. The thiophosphate moiety enhanced the stability of the Zn2+- nucleotide complex by about 0.7 log units. ATP-α,β-CH 2-γ-S formed the most stable Zn2+-complex studied here, log K 6.50, being ~0.8 and ~1.1 log units more stable than ATP-γ-S-Zn2+ and ATP-Zn2+ complexes, and was the major species, 84%, under physiological pH. Guanine nucleotides Zn2+ complexes were more stable by 0.3-0.4 log units than the corresponding adenine nucleotide complexes. Likewise, AP3(β-S)A-zinc complex was ~0.5 log units more stable than AP3A complex. 1H- and 31P NMR monitored Zn2+ titration showed that Zn 2+ coordinates with the purine nucleotide N7-nitrogen atom, the terminal phosphate, and the adjacent phosphate. In conclusion, replacement of a terminal phosphate by a thiophosphate group resulted in decrease of the acidity of the phosphate moiety by approximately one log unit, and increase of stability of Zn2+-complexes of the latter analogues by up to 0.7 log units. A terminal phosphorothioate contributed more to the stability of nucleotide-Zn2+ complexes than a bridging phosphorothioate.

A phosphatase specific for nucleoside diphosphates.

GIBSON,AYENGAR,SANADI

, p. 536 - 538 (1955)

-

Catalytic activity of human guanylate-binding protein 1 coupled to the release of structural restraints imposed by the C-terminal domain

Ince, Semra,Zhang, Ping,Kutsch, Miriam,Krenczyk, Oktavian,Shydlovskyi, Sergii,Herrmann, Christian

, p. 582 - 599 (2020/06/02)

Human guanylate-binding protein 1 (hGBP-1) shows a dimer-induced acceleration of the GTPase activity yielding GDP as well as GMP. While the head-to-head dimerization of the large GTPase (LG) domain is well understood, the role of the rest of the protein, particularly of the GTPase effector domain (GED), in dimerization and GTP hydrolysis is still obscure. In this study, with truncations and point mutations on hGBP-1 and by means of biochemical and biophysical methods, we demonstrate that the intramolecular communication between the LG domain and the GED (LG:GED) is crucial for protein dimerization and dimer-stimulated GTP hydrolysis. In the course of GTP binding and γ-phosphate cleavage, conformational changes within hGBP-1 are controlled by a chain of amino acids ranging from the region near the nucleotide-binding pocket to the distant LG:GED interface and lead to the release of the GED from the LG domain. This opening of the structure allows the protein to form GED:GED contacts within the dimer, in addition to the established LG:LG interface. After releasing the cleaved γ-phosphate, the dimer either dissociates yielding GDP as the final product or it stays dimeric to further cleave the β-phosphate yielding GMP. The second phosphate cleavage step, that is, the formation of GMP, is even more strongly coupled to structural changes and thus more sensitive to structural restraints imposed by the GED. Altogether, we depict a comprehensive mechanism of GTP hydrolysis catalyzed by hGBP-1, which provides a detailed molecular understanding of the enzymatic activity connected to large structural rearrangements of the protein. Database: Structural data are available in RCSB Protein Data Bank under the accession numbers: 1F5N, 1DG3, 2B92.

Synthesis of ribonucleotides from the corresponding ribonucleosides under plausible prebiotic conditions within self-assembled supramolecular structures

Franco,Ascenso,Ilharco,Da Silva

supporting information, p. 2206 - 2209 (2020/02/20)

Abiotic synthesis of ribonucleotides, mainly at the 5′ position, from the corresponding ribonucleosides within self-assembled supramolecular structures, based on guanosine:borate hydrogels, was carried out in the temperature range of 70-90 °C, using urea and a phosphate source (K2HPO4 or hydroxyapatite). Phosphorylation is possible at initial concentrations of guanosine lower than 20 mM and it is more efficient using wet/dry cycles. Monoamidophosphate (and, eventually, diamidophosphate), diamidodiphosphate and pyrophosphate are intermediates in the synthesis of ribonucleotides. These conclusions are supported by NMR spectroscopy and mass spectrometry analysis of samples. On the other hand, after reaction, hydrogels can produce globular aggregates by the addition of water and decreasing temperature, thus confirming that ribonucleotides, once activated under suitable conditions, could form polyribonucleotides.

Cloning, expression and biochemical characterization of xanthine and adenine phosphoribosyltransferases from Thermus thermophilus HB8

Del Arco, Jon,Martinez, María,Donday, Manuel,Clemente-Suarez, Vicente Javier,Fernández-Lucas, Jesús

, p. 216 - 223 (2017/09/30)

Purine phosphoribosyltransferases, purine PRTs, are essential enzymes in the purine salvage pathway of living organisms. They are involved in the formation of C-N glycosidic bonds in purine nucleosides-5′-monophosphate (NMPs) through the transfer of the 5-phosphoribosyl group from 5-phospho-α-D-ribosyl-1-pyrophosphate (PRPP) to purine nucleobases in the presence of Mg2+. Herein, we report a simple and thermostable process for the one-pot, one-step synthesis of some purine NMPs using xanthine phosphoribosyltransferase, XPRT or adenine phosphoribosyltransferase, APRT2, from Thermus thermophilus HB8. In this sense, the cloning, expression and purification of TtXPRT and TtAPRT2 is described for the first time. Both genes, xprt and aprt2 were expressed as his-tagged enzymes in E. coli BL21(DE3) and purified by a heat-shock treatment, followed by Ni-affinity chromatography and a final, polishing gel-filtration chromatography. Biochemical characterization revealed TtXPRT as a tetramer and TtAPRT2 as a dimer. In addition, both enzymes displayed a strong temperature dependence (relative activity >75% in a temperature range from 70 to 90 °C), but they also showed very different behaviour under the influence of pH. While TtXPRT is active in a pH range from 5 to 7, TtAPRT2 has a high dependence of alkaline conditions, showing highest activity values in a pH range from 8 to 10. Finally, substrate specificity studies were performed in order to explore their potential as industrial biocatalyst for NMPs synthesis.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 85-32-5