Welcome to LookChem.com Sign In|Join Free

CAS

  • or

872-38-8

Post Buying Request

872-38-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

872-38-8 Usage

General Description

"(3-methyloxiran-2-yl)methanol" is a chemical compound with the molecular formula C5H10O2. It is a colorless liquid with a pungent odor and is commonly used as a solvent in various industrial processes. (3-methyloxiran-2-yl)methanol is also known as glycidol, and it is a precursor to the polymer epoxy resin, which is widely used in the production of adhesives, coatings, and plastics. However, it is also considered a potential carcinogen and has been the subject of regulatory scrutiny due to its potential health risks. As a result, it is important to handle and use "(3-methyloxiran-2-yl)methanol" with care and in accordance with safety regulations.

Check Digit Verification of cas no

The CAS Registry Mumber 872-38-8 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 8,7 and 2 respectively; the second part has 2 digits, 3 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 872-38:
(5*8)+(4*7)+(3*2)+(2*3)+(1*8)=88
88 % 10 = 8
So 872-38-8 is a valid CAS Registry Number.

872-38-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name (3-methyloxiran-2-yl)methanol

1.2 Other means of identification

Product number -
Other names 2-hydroxymethyl-3-methyl-oxirane

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:872-38-8 SDS

872-38-8Relevant articles and documents

Olefin epoxidation with ionic liquid catalysts formed by supramolecular interactions

Ding, Bingjie,Hou, Zhenshan,Li, Difan,Ma, Wenbao,Yao, Yefeng,Zhang, Ran,Zheng, Anna,Zhou, Qingqing

, (2020/12/29)

This work demonstrated that the specific ionic liquids (ILs) have been designed via the supramolecular complexation between 18-crown-6 (CE) and ammonium peroxoniobate (NH4-Nb). The resultant ILs have been characterized by elemental analysis, FT-IR, Raman, NMR, DSC, conductivity measurement and MALDI-TOF, etc. The IL (CE-1) consisting of CE and ammonium peroxoniobate can be further coordinated with GLY to generate a new IL (CE-2), which showed both high catalytic activity in epoxidation with H2O2 and good recyclability. The characterization of 93Nb NMR spectra revealed that the peroxoniobate anions has demonstrated a structural evolution in the presence of hydrogen peroxide, in which Nb[dbnd]O species can be easily oxidized into the catalytically active niobium?peroxo species. Especially, the supramolecular complexation can provide suitable hydrophobicity, which ensured that the hydrophobic olefins and allylic alcohols were easily accessible to the catalytically active anions, and thus facilitated the epoxidation reaction. Notably, the supramolecular IL catalysts in this work exhibited a huge advantage of the easy availability, as compared with the previously reported peroxoniobate-based ILs. As far as we know, this is the first example of the highly selective epoxidation of olefins and allylic alcohols by using supramolecular ILs as catalysts.

Three- and two-site heteropolyoxotungstate anions as catalysts for the epoxidation of allylic alcohols by H2O2 under biphasic conditions: Reactivity and kinetic studies of the [Ni3(OH2)3(B-PW9O34){WO5(H2O)}]7?, [Co3(OH2)6(A-PW9O34)2]12?, and [M4(OH2)2(B-PW9O34)2]10? anions, where M?=?Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)

Abram, Paulus Hengky,Burns, Robert C.,Li, Lichun

, (2019/10/19)

The trimetallic phosphopolyoxotungstate anions [Ni3(OH2)3(B-PW9O34){WO5(H2O)}]7? and [Co3(OH2)6(A-PW9O34)2]12? have been studied as epoxidation catalysts for oxygen transfer from 30% H2O2 to a range of allylic alcohols under biphasic conditions (1,2-dichloroethane/H2O) at 15 °C. The reaction mechanism involves coordination of an allylic alcohol at an M(II) site in each case, prior to transfer of a peroxy oxygen from an adjacent W(O2) site. The latter is formed from a terminal W = O unit by reaction with H2O2. Evidence of W(O2) formation was obtained through IR studies. The W(O2) group forms the epoxide by transfer of an oxygen atom to the C[dbnd]C bond of the coordinated allylic alcohol. Kinetic studies using 3-methyl-2-buten-1-ol as the allylic alcohol substrate have been modelled with all three metal sites catalytically active. The reaction involves an autocatalysis mechanism involving an induction period, which can be rationalised by proposing not only coordination of the allylic alcohol to M(II), but also the product hydroxy epoxide, both through their –OH groups. The autocatalysis is generated by formation of the W(O2) group adjacent to a coordinated hydroxy epoxide, which competes with coordination of allylic alcohol. The mechanism requires some twenty-one steps involving just the generic steps listed above, with all three metal sites catalytically active. Temperature-dependent kinetic studies and subsequent Eyring analyses have shown that the Co(II)-containing catalyst is the most active of the two. Analogous studies of the epoxidation of 3-methyl-2-buten-1-ol by the two-site [M4(OH2)2(B-PW9O34)2]10? ions as catalysts, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II), at 15 °C gave an order of reactivity of Cu(II) > Ni(II) > Zn(II), Co(II), Mn(II), which mostly mimics the natural order of stability constants (the Irving-Williams series), suggesting that the formation of the allylic alcohol complexes play a dominant role in this series of related complex anions, with greater replacement of water by allylic alcohol leading to greater reactivity.

A mononuclear tantalum catalyst with a peroxocarbonate ligand for olefin epoxidation in compressed CO2

Ma, Wenbao,Qiao, Yunxiang,Theyssen, Nils,Zhou, Qingqing,Li, Difan,Ding, Bingjie,Wang, Dongqi,Hou, Zhenshan

, p. 1621 - 1630 (2019/04/10)

A new class of tantalum-based peroxocarbonate ionic liquid ([P4,4,4,4]3[Ta(η2-O2)3(CO4)]) has been generated through the reaction of pressurized CO2 with [P4,4,4,4]3[Ta(O)3(η2-O2)] in the presence of H2O2 during the reaction process. The newly formed species has been verified by NMR, FT-IR, HRMS and density functional theory (DFT) calculations. The CO2-induced monomeric peroxocarbonate anion-based ionic liquid is more advantageous than the monomeric peroxotantalate analogue for the epoxidation of olefins under very mild conditions. Interestingly, the transformation between peroxotantalate and peroxocarbonate species is completely reversible, and CO2 can actually act as a trigger agent for epoxidation reaction. The further mechanism studies by DFT calculation reveal that peroxo η2-O2 (site a) affords higher reactivity towards the CC bond than that of peroxocarbonate-CO4 (site b). These quantitative illustrations of the relationship between structural properties and kinetic consequences enable rational design for an efficient and environmental IL catalyst for the epoxidation of olefins.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 872-38-8