90923-75-4Relevant articles and documents
Discovery of novel pyrazoline derivatives containing methyl-1H-indole moiety as potential inhibitors for blocking APC-Asef interactions
Fang, Li,Li, Hua,Li, Shu-Kai,Qi, Jin-Liang,Qi, Peng-Fei,Xu, Chen,Yang, Yu-Shun,Zhu, Hai-Liang
, (2020)
A series of novel pyrazoline derivatives containing methyl-1H-indole moiety were discovered as potential inhibitors for blocking APC-Asef interactions. The top hit Q19 suggested potency of inhibiting APC-Asef interactions and attractive preference for human-sourced colorectal cells. It was already comparable with the previous representative and the positive control Regorafenib before further pharmacokinetic optimization. The introduction of methyl-1H-indole moiety realized the Mitochondrial affection thus might connect the impact on the protein-interaction level with the apoptosis events. The molecular docking simulation inferred that bringing trifluoromethyl groups seemed a promising approach for causing more key interactions such as H-bonds. This work raised referable information for further discovery of inhibitors for blocking APC-Asef interactions.
Palladium-Catalyzed Reductive Carbonylation of (Hetero) Aryl Halides and Triflates Using Cobalt Carbonyl as CO Source
Dogga, Bhushanarao,Joseph, Jayan T.,Kumar, C. S. Ananda
supporting information, p. 309 - 313 (2020/12/23)
An efficient protocol for the reductive carbonylation of (hetero) aryl halides and triflates under CO gas-free conditions using Pd/Co2(CO)8 and triethylsilane has been developed. The mild reaction conditions, enhanced chemoselectivity and, easy access to heterocyclic and vinyl carboxaldehydes highlights its importance in organic synthesis.
COMPOUNDS AND COMPOSITIONS FOR THE TREATMENT OF TUMORS
-
Page/Page column 99-100, (2021/06/22)
The present invention relates to compounds of Formula (Ia) or pharmaceutically acceptable salts, hydrates, solvates, clathrates, polymorphs, stereoisomers thereof. It further discloses a pharmaceutical composition comprising compounds of Formula (Ia) and the use of compounds of Formula (Ib), in particular for the use in the treatment of diseases or disorders wherein disrupting Rad51-BRCA2 interaction is beneficial.
Methylsulfanylpyridine based diheteroaryl isocombretastatin analogs as potent anti-proliferative agents
álvarez, Raquel,Aramburu, Laura,Gajate, Consuelo,Vicente-Blázquez, Alba,Mollinedo, Faustino,Medarde, Manuel,Peláez, Rafael
, (2020/11/02)
Isocombretastatins are the not isomerizable 1,1-diarylethene isomers of combretastatins. Both families of antimitotics are poorly soluble and new analogs with improved water solubility are needed. The ubiquitous 3,4,5-trimethoxyphenyl ring and most of its replacements contribute to the solubility problem. 39 new compounds belonging to two series of isocombretastatin analogs with 2-chloro-6-methylsulfanyl-4-pyridinyl or 2,6-bis(methylsulfanyl)-4-pyridinyl moieties replacing the 3,4,5-trimethoxyphenyl have been synthesized and their antimitotic activity and aqueous solubility have been studied. We show here that 2-chloro-6-methylsulfanylpyridines are more successful replacements than 2,6-bis(methylsulfanyl)pyridines, giving highly potent tubulin inhibitors and cytotoxic compounds with improved water solubilities. The optimal combination is with indole rings carrying polar substitutions at the three position. The resulting diheteroaryl isocombretastatin analogs showed potent cytotoxic activity against human cancer cell lines caused by tubulin inhibition, as shown by in vitro tubulin polymerization inhibitory assays, cell cycle analysis, and confocal microscopy studies. Cell cycle analysis also showed apoptotic responses following G2/M arrest after treatment. Conformational analysis and docking studies were applied to propose binding modes of the compounds at the colchicine site of tubulin and were in good agreement with the observed SAR. 2-Chloro-6-methylsulfanylpyridines represent a new and successful trimethoxyphenyl ring substitution for the development of improved colchicine site ligands.
Synthetic Lethality in Pancreatic Cancer: Discovery of a New RAD51-BRCA2 Small Molecule Disruptor That Inhibits Homologous Recombination and Synergizes with Olaparib
Bagnolini, Greta,Milano, Domenico,Manerba, Marcella,Schipani, Fabrizio,Ortega, Jose Antonio,Gioia, Dario,Falchi, Federico,Balboni, Andrea,Farabegoli, Fulvia,De Franco, Francesca,Robertson, Janet,Pellicciari, Roberto,Pallavicini, Isabella,Peri, Sebastiano,Minucci, Saverio,Girotto, Stefania,Di Stefano, Giuseppina,Roberti, Marinella,Cavalli, Andrea
supporting information, p. 2588 - 2619 (2020/03/05)
Synthetic lethality is an innovative framework for discovering novel anticancer drug candidates. One example is the use of PARP inhibitors (PARPi) in oncology patients with BRCA mutations. Here, we exploit a new paradigm based on the possibility of triggering synthetic lethality using only small organic molecules (dubbed "fully small-molecule-induced synthetic lethality"). We exploited this paradigm to target pancreatic cancer, one of the major unmet needs in oncology. We discovered a dihydroquinolone pyrazoline-based molecule (35d) that disrupts the RAD51-BRCA2 protein-protein interaction, thus mimicking the effect of BRCA2 mutation. 35d inhibits the homologous recombination in a human pancreatic adenocarcinoma cell line. In addition, it synergizes with olaparib (a PARPi) to trigger synthetic lethality. This strategy aims to widen the use of PARPi in BRCA-competent and olaparib-resistant cancers, making fully small-molecule-induced synthetic lethality an innovative approach toward unmet oncological needs.
Potent colchicine-site ligands with improved intrinsic solubility by replacement of the 3,4,5-trimethoxyphenyl ring with a 2-methylsulfanyl-6-methoxypyridine ring
Aramburu, Laura,Gajate, Consuelo,Medarde, Manuel,Mollinedo, Faustino,álvarez, Raquel,Peláez, Rafael,Vicente-Blázquez, Alba
, (2020/03/27)
Colchicine site antimitotic agents typically suffer from low aqueous solubilities and are formulated as phosphate prodrugs of phenolic groups. These hydroxyl groups are the aim of metabolic transformations leading to resistance. There is an urgent need for more intrinsically soluble analogues lacking these hydroxyl groups. The 3,4,5-trimethoxyphenyl ring of combretastatin A-4 is a liability in terms of solubility but it is considered essential for high cytotoxic and tubulin polymerization inhibitory (TPI) activity. We have synthesized 36 new analogues of combretastatin A-4 replacing the trimethoxyphenyl moiety with more polar pyridine based moieties, measured their aqueous solubility, and studied their anti-proliferative effects against 3 human cancer cell lines. We show here that pyridine rings can be successful replacements for the trimethoxyphenyl ring, resulting in potent and more soluble analogues. The more straightforward replacement, a 2,6-dimethoxypyridine ring led to inactive analogues, but a 2-methoxy-6-methylsulfanylpyridine moiety led to active analogues when combined with different B rings. This replacement led to potent cytotoxic activity against sensitive human cancer cell lines due to tubulin inhibition, as shown by cell cycle analysis, confocal microscopy, and tubulin polymerization inhibitory activity studies. Cell cycle analysis also showed apoptotic responses following treatment. Docking studies suggested binding at the colchicine site of tubulin and provided a good agreement with the observed SAR. A 2-methoxy-6-methylsulfanylpyridine moiety is a good trimethoxyphenyl ring replacement for the development of new colchicine site ligands.
Preparation method and application of novel methylindole-containing aniline derivatives taking pyrazoline as skeleton
-
Paragraph 0012; 0018-0021, (2020/05/14)
The invention discloses methylindole-containing aniline derivatives taking pyrazoline as a skeleton, a preparation method of the methylindole-containing aniline derivatives and application of the methylindole-containing aniline derivatives in the anti-colon cancer tumor direction. The compound has a structural general formula shown in the specification, and in the structural general formula, R1 isselected from H and -CH3O; R2 is selected from H and -CH3O; R3 is selected from H, -CH3O and -CH3; R4 is selected from H, -Br, -Cl, -NO2, -CF3 and -F; R5 is selected from H, -Cl, -F and -NO2; and R6is selected from H and -CF3.
Rhodium-Catalyzed Deoxygenation and Borylation of Ketones: A Combined Experimental and Theoretical Investigation
Tao, Lei,Guo, Xueying,Li, Jie,Li, Ruoling,Lin, Zhenyang,Zhao, Wanxiang
supporting information, p. 18118 - 18127 (2020/11/26)
The rhodium-catalyzed deoxygenation and borylation of ketones with B2pin2 have been developed, leading to efficient formation of alkenes, vinylboronates, and vinyldiboronates. These reactions feature mild reaction conditions, a broad substrate scope, and excellent functional-group compatibility. Mechanistic studies support that the ketones initially undergo a Rh-catalyzed deoxygenation to give alkenes via boron enolate intermediates, and the subsequent Rh-catalyzed dehydrogenative borylation of alkenes leads to the formation of vinylboronates and diboration products, which is also supported by density functional theory calculations.
Replacement of Stoichiometric DDQ with a Low Potential o-Quinone Catalyst Enabling Aerobic Dehydrogenation of Tertiary Indolines in Pharmaceutical Intermediates
Li, Bao,Wendlandt, Alison E.,Stahl, Shannon S.
supporting information, p. 1176 - 1181 (2019/02/14)
A transition-metal/quinone complex, [Ru(phd)3]2+ (phd = 1,10-phenanthroline-5,6-dione), is shown to be effective for aerobic dehydrogenation of 3° indolines to the corresponding indoles. The results show how low potential quinones may be tailored to provide a catalytic alternative to stoichiometric DDQ, due to their ability to mediate efficient substrate dehydrogenation while also being compatible with facile reoxidation by O2. The utility of the method is demonstrated in the synthesis of key intermediates to pharmaceutically important molecules.
Identification of an indol-based multi-target kinase inhibitor through phenotype screening and target fishing using inverse virtual screening approach
Ostacolo, Carmine,Di Sarno, Veronica,Lauro, Gianluigi,Pepe, Giacomo,Musella, Simona,Ciaglia, Tania,Vestuto, Vincenzo,Autore, Giuseppina,Bifulco, Giuseppe,Marzocco, Stefania,Campiglia, Pietro,Gomez-Monterrey, Isabel M.,Bertamino, Alessia
, p. 61 - 75 (2019/02/15)
A series of 1,3,5-substituted indole derivatives was prepared to explore the anti-proliferative activity against a panel of human tumour cell lines. A 5-carboxamide derivative (27) emerged as the most potent compound of this series, inhibiting the HeLa cell growth at sub-micromolar concentrations. Target fishing of 27 using a combination of inverse virtual screening (IVS) approach and ligand-based shape similarity study identified the top-ranked targets for 27 as belonging to kinome. These results were further confirmed by in vitro binding assays, leading to the identification of 27 as multi-target kinase inhibitor. The compound 27 was further characterized for its antiproliferative activity by in cell studies, showing a mechanism of action involving modification of the cell cycle, increase in ROS release and caspase 3-expression and decrease in ERK expression.