Welcome to LookChem.com Sign In|Join Free

CAS

  • or

95465-70-6

Post Buying Request

95465-70-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

95465-70-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 95465-70-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 9,5,4,6 and 5 respectively; the second part has 2 digits, 7 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 95465-70:
(7*9)+(6*5)+(5*4)+(4*6)+(3*5)+(2*7)+(1*0)=166
166 % 10 = 6
So 95465-70-6 is a valid CAS Registry Number.
InChI:InChI=1/C16H16O/c1-13-6-5-7-14(12-13)10-11-16(17)15-8-3-2-4-9-15/h2-9,12H,10-11H2,1H3

95465-70-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-(3-methylphenyl)-1-phenylpropan-1-one

1.2 Other means of identification

Product number -
Other names 1-phenyl-3-m-tolylpropan-1-one

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:95465-70-6 SDS

95465-70-6Relevant articles and documents

Selective C-C bonds formation, N-alkylation and benzo[d]imidazoles synthesis by a recyclable zinc composite

Zhu, Guanxin,Duan, Zheng-Chao,Zhu, Haiyan,Ye, Dongdong,Wang, Dawei

supporting information, p. 266 - 270 (2021/08/06)

Earth abundant metals are much less expensive, promising, valuable metals and could be served as catalysts for the borrowing hydrogen reaction, dehydrogenation and heterocycles synthesis, instead of noble metals. The uniformly dispersed zinc composites were designed, synthesized and carefully characterized by means of XPS, EDS, TEM and XRD. The resulting zinc composite showed good catalytic activity for the N-alkylation of amines with amines, ketones with alcohols in water under base-free conditions, while unsaturated carbonyl compounds could also be synthesized by tuning the reaction conditions. Importantly, it was the first time to realize the synthesis of 2-aryl-1H-benzo[d]imidazole derivatives by using this zinc composite under green conditions. Meanwhile, this zinc catalyst could be easily recovered and reused for at least five times.

Visible-Light Decatungstate/Disulfide Dual Catalysis for the Hydro-Functionalization of Styrenes

Prieto, Alexis,Taillefer, Marc

supporting information, p. 1484 - 1488 (2021/03/08)

We describe an efficient photoredox system, relying on decatungstate/disulfide catalysts, for the hydrofunctionalization of styrenes. In this methodology the use of disulfide as a cocatalyst was shown to be crucial for the reaction efficiency. This photoredox system was employed for the hydro-carbamoylation, -acylation, -alkylation, and -silylation of styrenes, giving access to a large variety of useful building blocks and high-value molecules such as amides and unsymmetrical ketones from simple starting materials.

Phosphine-free pincer-ruthenium catalyzed biofuel production: High rates, yields and turnovers of solventless alcohol alkylation

Das, Babulal,Das, Kanu,Kumar, Akshai,Srivastava, Hemant Kumar,Yasmin, Eileen

, p. 8347 - 8358 (2020/12/31)

Phosphine-free pincer-ruthenium carbonyl complexes based on bis(imino)pyridine and 2,6-bis(benzimidazole-2-yl) pyridine ligands have been synthesized. For the β-alkylation of 1-phenyl ethanol with benzyl alcohol at 140 °C under solvent-free conditions, (Cy2NNN)RuCl2(CO) (0.00025 mol%) in combination with NaOH (2.5 mol%) was highly efficient (ca. 93% yield, 372?000 TON at 12?000 TO h-1). These are the highest reported values hitherto for a ruthenium based catalyst. The β-alkylation of various alcohol combinations was accomplished with ease which culminated to give 380?000 TON at 19?000 TO h-1 for the β-alkylation of 1-phenyl ethanol with 3-methoxy benzyl alcohol. DFT studies were complementary to mechanistic studies and indicate the β-hydride elimination step involving the extrusion of acetophenone to be the overall RDS. While the hydrogenation step is favored for the formation of α-alkylated ketone, the alcoholysis step is preferred for the formation of β-alkylated alcohol. The studies were extended for the upgradation of ethanol to biofuels. Among the pincer-ruthenium complexes based on bis(imino)pyridine, (Cy2NNN)RuCl2(CO) provided high productivity (335 TON at 170 TO h-1). Sterically more open pincer-ruthenium complexes such as (Bim2NNN)RuCl2(CO) based on the 2,6-bis(benzimidazole-2-yl) pyridine ligand demonstrated better reactivity and gave not only good ethanol conversion (ca. 58%) but also high turnovers (ca. 2100) with a good rate (ca. 710 TO h-1). Kinetic studies indicate first order dependence on concentration of both the catalyst and ethanol. Phosphine-free catalytic systems operating with unprecedented activity at a very low base loading to couple lower alcohols to higher alcohols of fuel and pharmaceutical importance are the salient features of this report. This journal is

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 95465-70-6