102477-83-8Relevant articles and documents
RuHCl(CO)(PPh3)3-catalyzed R-alkylation of ketones with primary alcohols
Kuwahara, Takashi,Fukuyama, Takahide,Ryu, Ilhyong
, p. 4703 - 4705,3 (2012)
The α-alkylation reaction of ketones with primary alcohols to give α-alkylated ketones was achieved using RuHCl(CO)(PPh3) 3 as a catalyst in the presence of Cs2CO3 as a base. This reaction proceeds via an aldol condensation of ketones with aldehydes, formed via transfer dehydrogenation of alcohols, to give α,β-unsaturated ketones, which then undergo transfer hydrogenation with primary alcohols to give R-alkylated ketones and aldehydes, the latter of which participate in the next catalytic cycle. While the reaction of aliphatic primary alcohols was sluggish compared with that of benzylic alcohols, a catalytic amount of 1,10-phenanthroline was found to promote the alkylation dramatically.
Selective C-C bonds formation, N-alkylation and benzo[d]imidazoles synthesis by a recyclable zinc composite
Zhu, Guanxin,Duan, Zheng-Chao,Zhu, Haiyan,Ye, Dongdong,Wang, Dawei
supporting information, p. 266 - 270 (2021/08/06)
Earth abundant metals are much less expensive, promising, valuable metals and could be served as catalysts for the borrowing hydrogen reaction, dehydrogenation and heterocycles synthesis, instead of noble metals. The uniformly dispersed zinc composites were designed, synthesized and carefully characterized by means of XPS, EDS, TEM and XRD. The resulting zinc composite showed good catalytic activity for the N-alkylation of amines with amines, ketones with alcohols in water under base-free conditions, while unsaturated carbonyl compounds could also be synthesized by tuning the reaction conditions. Importantly, it was the first time to realize the synthesis of 2-aryl-1H-benzo[d]imidazole derivatives by using this zinc composite under green conditions. Meanwhile, this zinc catalyst could be easily recovered and reused for at least five times.
Nickel-catalyzed α-alkylation of ketones with benzyl alcohols
Wu, Di,Wang, Yubin,Li, Min,Shi, Lei,Liu, Jichang,Liu, Ning
, (2021/11/04)
We reported an efficient method for α-alkylation of ketones with benzyl alcohols using the pyridine-bridged pincer-type N-heterocyclic carbenes nickel complexes as catalysts. A wide range of ketones and benzyl alcohols were efficiently converted into various alkylated products in moderate to high yields. In addition, these nickel complexes were also successfully applied for the synthesis of a wide range of quinoline derivatives.
Olefination via Cu-Mediated Dehydroacylation of Unstrained Ketones
Dong, Guangbin,Xu, Yan,Zhou, Xukai
supporting information, p. 20042 - 20048 (2021/12/03)
The dehydroacylation of ketones to olefins is realized under mild conditions, which exhibits a unique reaction pathway involving aromatization-driven C-C cleavage to remove the acyl moiety, followed by Cu-mediated oxidative elimination to form an alkene between the α and β carbons. The newly adopted N′-methylpicolinohydrazonamide (MPHA) reagent is key to enable efficient cleavage of ketone C-C bonds at room temperature. Diverse alkyl- and aryl-substituted olefins, dienes, and special alkenes are generated with broad functional group tolerance. Strategic applications of this method are also demonstrated.
Scope and Mechanism of the Redox-Active 1,2-Benzoquinone Enabled Ruthenium-Catalyzed Deaminative α-Alkylation of Ketones with Amines
Kirinde Arachchige, Pandula T.,Handunneththige, Suhashini,Talipov, Marat R.,Kalutharage, Nishantha,Yi, Chae S.
, p. 13962 - 13972 (2021/11/20)
The catalytic system formed in situ from the reaction of a cationic Ru-H complex with 3,4,5,6-tetrachloro-1,2-benzoquinone was found to mediate a regioselective deaminative coupling reaction of ketones with amines to form the α-alkylated ketone products. Both benzylic and aliphatic primary amines were found to be suitable substrates for the coupling reaction with ketones in forming the α-alkylated ketone products. The coupling reaction of PhCOCD3 with 4-methoxybenzylamine showed an extensive H/D exchange on both α-CH2 (41% D) and β-CH2 (21%) positions on the alkylation product. The Hammett plot obtained from the reaction of acetophenone with para-substituted benzylamines p-X-C6H4CH2NH2 (X = OMe, Me, H, F, Cl, CF3) showed a strong promotional effect by the amine substrates with electron-releasing groups (ρ = -0.49 ± 0.1). The most significant carbon isotope effect was observed on the α-carbon of the alkylation product (Cα = 1.020) from the coupling reaction of acetophenone with 4-methoxybenzylamine. The kinetics of the alkylation reaction from an isolated imine substrate led to the empirical rate law: rate = k[Ru][imine]. A catalytically active Ru-catecholate complex was synthesized from the reaction of the cationic Ru-H complex with 3,5-di-tert-butyl-1,2-benzoquinone and PCy3. The DFT computational study was performed on the alkylation reaction, which revealed a stepwise mechanism of the [1,3]-carbon migration step via the formation of a Ru(IV)-alkyl species with a moderate energy of activation (ΔG? = 32-42 kcal/mol). A plausible mechanism of the catalytic alkylation reaction via an intramolecular [1,3]-alkyl migration of an Ru-enamine intermediate has been compiled on the basis of these experimental and computational data.
Neutral-eosin Y-catalyzed regioselective hydroacylation of aryl alkenes under visible-light irradiation
Liu, Haiwang,Xue, Fei,Wang, Mu,Tang, Xinxin,Wu, Jie
supporting information, p. 406 - 410 (2020/12/30)
Styrene derivatives were hydroacylated with exclusive anti-Markovnikov selectivity by using neutral eosin Y as a direct hydrogen-atom-transfer (HAT) catalyst under visible-light irradiation. Aldehydes and styrenes with various substituents were tolerated (>20 examples), giving the corresponding products in moderate to high yields. The key acyl radical intermediate was generated from a direct HAT process induced by photoexcited eosin Y. Subsequent addition to styrenes and a reverse HAT process generated the ketone products.
Visible-Light-Promoted Photocatalyst-Free Hydroacylation and Diacylation of Alkenes Tuned by NiCl2·DME
Zhao, Xinxin,Li, Bing,Xia, Wujiong
supporting information, p. 1056 - 1061 (2020/02/15)
Herein, we describe a visible light-promoted hydroacylation strategy that facilitates the preparation of ketones from alkenes and 4-acyl-1,4-dihydropyridines via an acyl radical addition and hydrogen atom transfer pathway under photocatalyst-free conditions. The efficiency was highlighted by wide substrate scope, good to high yields, successful scale-up experiments, and expedient preparation of highly functionalized ketone derivatives. In addition, this protocol allows for the synthesis of 1,4-dicarbonyl compounds through alkene diacylation in the presence of NiCl2·DME.
Cobalt-Catalyzed Chemoselective Transfer Hydrogenation of C=C and C=O Bonds with Alkanols
Jiang, Biao-Lin,Ma, Shuang-Shuang,Wang, Meng-Liang,Liu, Dian-Sheng,Xu, Bao-Hua,Zhang, Suo-Jiang
, p. 1701 - 1706 (2019/03/08)
An environmentally benign protocol of chemoselective transfer hydrogenation of C=C and C=O bonds with alkanols under base-free conditions is developed by this study, wherein the cobalt- bidentate phosphine catalyst precursor is commercially available and
Transition-Metal-Free Highly Chemoselective and Stereoselective Reduction with Se/DMF/H2O System
Li, Hong-Chen,An, Cui,Wu, Ge,Li, Guo-Xing,Huang, Xiao-Bo,Gao, Wen-Xia,Ding, Jin-Chang,Zhou, Yun-Bing,Liu, Miao-Chang,Wu, Hua-Yue
supporting information, p. 5573 - 5577 (2018/09/12)
A novel metal-free reduction system, in which H2Se (or HSe-) produced in situ from Se/DMF/H2O acts as the active reducing species, has been developed. By using water as an inexpensive, safe, and environmentally friendly surrogate as the hydrogen donor, this new reduction system incorporating Se/DMF/H2O displayed high selectivity and good activity in the reduction of α,β-unsaturated ketones and alkynes. Therefore, this reduction system has great potential to be a general and practical reduction methodology in organic transformation.
Design and Synthesis of Zirconium-Containing Coordination Polymer Based on Unsymmetric Indolyl Dicarboxylic Acid and Catalytic Application on Borrowing Hydrogen Reaction
Hu, Xinyu,Zhu, Haiyan,Sang, Xinxin,Wang, Dawei
, p. 4293 - 4300 (2018/10/02)
Catalytic borrowing hydrogen reaction is a very attractive transformation in the field of C-alkylation reaction. In this work, a new Zr (Zirconium)-containing coordination polymer containing unsymmetric indolyl dicarboxylic acid 1-(carboxymethyl)-1H-indole-5-carboxylic acid (H2CIA) was synthesized by the way of a solvothermal synthetic route and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Nitrogen adsorption-desorption, fourier transform infrared spectroscopy and X-ray photoelectronic spectroscopy (XPS). The coordination polymer Zr-CIA was employed as the catalyst for C-alkylation of acetophenone derivatives in the presence of benzyl alcohol. In addition, Zr-CIA catalyst was also observed to be effective in the reaction of alcohols with alcohols and high yields of alkylation products were achieved. Mechanism investigations were also conducted to better understand the catalysts and transformations. Meanwhile, the Zr-CIA could be reused at least five times without a notable decrease in activity and selectivity. (Figure presented.).