130312-00-4Relevant articles and documents
HETEROCYCLIC COMPOUNDS AS INHIBITORS OF HPK1
-
Page/Page column 199, (2021/01/29)
This disclosure relates to heterocyclics as inhibitors of HPK1, in particular relates to a compound of Formula I or a pharmaceutically acceptable salt thereof, and a pharmaceutical composition comprising said compound that useful for treatment of HPK1 mediated diseases and conditions such as cancer. (I)
NEW MACROCYCLIC LRRK2 KINASE INHIBITORS
-
Page/Page column 258-259, (2021/11/13)
Compounds of formula (I): wherein R, X1, X2, X3, Z1, Z2, Z3, A and Ra are as defined in the description. Medicaments.
Synthesis of All-Carbon Quaternary Centers by Palladium-Catalyzed Olefin Dicarbofunctionalization
Koy, Maximilian,Bellotti, Peter,Katzenburg, Felix,Daniliuc, Constantin G.,Glorius, Frank
supporting information, p. 2375 - 2379 (2020/01/24)
The redox-neutral dicarbofunctionalization of tri- and tetrasubstituted olefins to form a variety of (hetero)cyclic compounds under photoinduced palladium catalysis is described. This cascade reaction process was used to couple styrenes or acryl amides with a broad range of highly decorated olefins tethered to aryl or alkyl bromides (>50 examples). This procedure enables one or two contiguous all-carbon quaternary centers to be formed in a single step. The products could be readily diversified and applied in the synthesis of a bioactive oxindole analogue.
Visible-Light-Promoted Intramolecular α-Allylation of Aldehydes in the Absence of Sacrificial Hydrogen Acceptors
Liu, Feng,Liu, Jia-Li,tu, Jia-Lin
supporting information, p. 7369 - 7372 (2020/10/05)
We report herein an unprecedented protocol for radical cyclization of aldehydes with pendant alkenes via synergistic photoredox, cobaloxime, and amine catalysis. The transformation was achieved in the absence of external oxidants, providing a variety of 5-, 6-, and 7-membered ring products with alkene transposition in satisfactory yields. The reaction exhibits wide functional group compatibility and occurs under mild conditions with extrusion of H2.
ROR-GAMMA INHIBITORS
-
Page/Page column 245, (2019/04/26)
The present invention relates to compounds of formula I and pharmaceutical compositions comprising compounds of formula I. Compounds of Formula I are useful in treatment of inflammatory, metabolic or autoimmune diseases which are mediated by RORy.
Providing a New Aniline Bioisostere through the Photochemical Production of 1-Aminonorbornanes
Staveness, Daryl,Sodano, Taylor M.,Li, Kangjun,Burnham, Elizabeth A.,Jackson, Klarissa D.,Stephenson, Corey R.J.
supporting information, p. 215 - 226 (2019/01/21)
Recent years have witnessed an increasing focus on saturated substructures within drug development as a result of the pharmacokinetic and toxicological benefits correlated with higher saturation content. However, the synthetic challenges presented by densely functionalized saturated architectures generally prohibit their evaluation. The abundance of anilines within high-throughput screening libraries is demonstrative of these competing needs. Anilines are prone to adverse metabolic processing, commonly necessitating re-engineering of a given drug lead to ameliorate CYP450 inhibition and/or glutathione adduction issues, but the ease with which these systems are prepared outweighs the toxicity risks. This article contributes to the need for aniline bioisosteres through the development of a robust, photochemical methodology that supplies 1-aminonorbornanes, saturated bicyclic ring systems that offer similar spatial occupancy to anilines while improving metabolic stability. The chemistry provided herein details an efficient and flexible route toward architecturally distinctive 1-aminonorbornanes through the use of visible-light photoredox catalysis. The incorporation of readily diversifiable functional handles (e.g., -OH, -CO2Me, -NHBoc, -NHCbz) illustrates the potential utility of these 1-aminonorbornanes within drug-discovery programs. Additionally, these motifs offer improved metabolic stability relative to that of their aniline congeners (as demonstrated through microsomal stability assays and metabolite identification efforts), indicating applicability of 1-aminonorbornanes as aniline bioisosteres. This report describes the photochemical conversion of aminocyclopropanes into 1-aminonorbornanes via formal [3 + 2] cycloadditions initiated by homolytic fragmentation of amine radical cation intermediates. Aligning with the modern movement toward sp3-rich motifs in drug discovery, this strategy provides access to a diverse array of substitution patterns on this saturated carbocyclic framework while offering the robust functional-group tolerance (e.g., -OH, -NHBoc) necessary for further derivatization. Evaluating the metabolic stability of selected morpholine-based 1-aminonorbornanes demonstrated a low propensity for oxidative processing and no proclivity toward reactive metabolite formation, suggesting a potential bioisosteric role for 1-aminonorbornanes. Continuous-flow processing allowed for efficient operation on the gram scale, providing promise for translation to industrially relevant scales. This methodology only requires low loadings of a commercially available, visible-light-active photocatalyst and a simple salt; thus, it stays true to sustainability goals while readily delivering saturated building blocks that can reduce metabolic susceptibility within drug development programs.
Macrocyclic MCL-1 inhibitors and methods of use
-
Paragraph 0977, (2019/02/28)
The present disclosure provides for compounds of Formula (I) wherein A2, A3, A4, A6, A7, A8, A15, RA, R5, R9, R10A, R10B, R11, R12, R13, R14, R16, W, X, and Y have any of the values defined in the specification, and pharmaceutically acceptable salts thereof, that are useful as agents for the treatment of diseases and conditions, including cancer. Also provided are pharmaceutical compositions comprising compounds of Formula (I).
Multicatalytic Stereoselective Synthesis of Highly Substituted Alkenes by Sequential Isomerization/Cross-Coupling Reactions
Romano, Ciro,Mazet, Clément
supporting information, p. 4743 - 4750 (2018/04/10)
Starting from readily available alkenyl methyl ethers, the stereoselective preparation of highly substituted alkenes by two complementary multicatalytic sequential isomerization/cross-coupling sequences is described. Both elementary steps of these sequences are challenging processes when considered independently. A cationic iridium catalyst was identified for the stereoselective isomerization of allyl methyl ethers and was found to be compatible with a nickel catalyst for the subsequent cross-coupling of the in situ generated methyl vinyl ethers with various Grignard reagents. The method is compatible with sensitive functional groups and a multitude of olefinic substitution patterns to deliver products with high control of the newly generated C=C bond. A highly enantioselective variant of this [Ir/Ni] sequence has been established using a chiral iridium precatalyst. A complementary [Pd/Ni] catalytic sequence has been optimized for alkenyl methyl ethers with a remote C=C bond. The final alkenes were isolated with a lower level of stereocontrol. Upon proper choice of the Grignard reagent, we demonstrated that C(sp2) - C(sp2) and C(sp2) - C(sp3) bonds can be constructed with both systems delivering products that would be difficult to access by conventional methods.
Copper-Catalyzed Enantio-, Diastereo-, and Regioselective [2,3]-Rearrangements of Iodonium Ylides
Xu, Bin,Tambar, Uttam K.
supporting information, p. 9868 - 9871 (2017/08/08)
The first highly enantioselective, diastereoselective, and regioselective [2,3]-rearrangement of iodonium ylides has been developed as a general solution to catalytic onium ylide rearrangements. In the presence of a chiral copper catalyst, substituted allylic iodides couple with α-diazoesters to generate metal-coordinated iodonium ylides, which undergo [2,3]-rearrangements with high selectivities (up to >95:5 r.r., up to >95:5 d.r., and up to 97 % ee). The enantioenriched iodoester products can be converted stereospecifically into a variety of onium ylide rearrangement products, as well as compounds that are not accessible by classical onium ylide rearrangements.
DIHYDROPYRROLOPYRIDINE INHIBITORS OF ROR-GAMMA
-
Paragraph 00104, (2016/05/24)
Provided are novel compounds of Formula (I): pharmaceutically acceptable salts thereof, and pharmaceutical compositions thereof, which are useful in the treatment of diseases and disorders mediated by RORy. Also provided are pharmaceutical compositions co