130365-40-1Relevant articles and documents
Lewis-Pair-Mediated Selective Dimerization and Polymerization of Lignocellulose-Based β-Angelica Lactone into Biofuel and Acrylic Bioplastic
Hong, Miao,Wang, Xiao-Jun
, p. 2664 - 2668 (2020)
This contribution reports an unprecedentedly efficient dimerization and the first successful polymerization of lignocellulose-based β-angelica lactone (β-AL) by utilizing a selective Lewis pair (LP) catalytic system, thereby establishing a versatile bio-refinery platform wherein two products, including a dimer for high-quality gasoline-like biofuel (C8–C9 branched alkanes, yield=87 %) and a heat- and solvent-resistant acrylic bioplastic (Mn up to 26.0 kg mol?1), can be synthesized from one feedstock by one catalytic system. The underlying reason for exquisite selectivity of the LP catalytic system toward dimerization and polymerization was explored mechanistically.
Fabricating nickel phyllosilicate-like nanosheets to prepare a defect-rich catalyst for the one-pot conversion of lignin into hydrocarbons under mild conditions
Cao, Meifang,Chen, Bo,He, Chengzhi,Ouyang, Xinping,Qian, Yong,Qiu, Xueqing
supporting information, p. 846 - 857 (2022/02/09)
The one-pot conversion of lignin biomass into high-grade hydrocarbon biofuels via catalytic hydrodeoxygenation (HDO) holds significant promise for renewable energy. A great challenge for this route involves developing efficient non-noble metal catalysts to obtain a high yield of hydrocarbons under relatively mild conditions. Herein, a high-performance catalyst has been prepared via the in situ reduction of Ni phyllosilicate-like nanosheets (Ni-PS) synthesized by a reduction-oxidation strategy at room temperature. The Ni-PS precursors are partly converted into Ni0 nanoparticles by in situ reduction and the rest remain as supports. The Si-containing supports are found to have strong interactions with the nickel species, hindering the aggregation of Ni0 particles and minimizing the Ni0 particle size. The catalyst contains abundant surface defects, weak Lewis acid sites and highly dispersed Ni0 particles. The catalyst exhibits excellent catalytic activity towards the depolymerization and HDO of the lignin model compound, 2-phenylethyl phenyl ether (PPE), and the enzymatic hydrolysis of lignin under mild conditions, with 98.3% cycloalkane yield for the HDO of PPE under 3 MPa H2 pressure at 160 °C and 40.4% hydrocarbon yield for that of lignin under 3 MPa H2 pressure at 240 °C, and its catalytic activity can compete with reported noble metal catalysts.
The solvent determines the product in the hydrogenation of aromatic ketones using unligated RhCl3as catalyst precursor
Bartling, Stephan,Chakrabortty, Soumyadeep,De Vries, Johannes G.,Kamer, Paul C. J.,Lund, Henrik,Müller, Bernd H.,Rockstroh, Nils
, p. 7608 - 7616 (2021/12/13)
Alkyl cyclohexanes were synthesized in high selectivity via a combined hydrogenation/hydrodeoxygenation of aromatic ketones using ligand-free RhCl3 as pre-catalyst in trifluoroethanol as solvent. The true catalyst consists of rhodium nanoparticles (Rh NPs), generated in situ during the reaction. A range of conjugated as well as non-conjugated aromatic ketones were directly hydrodeoxygenated to the corresponding saturated cyclohexane derivatives at relatively mild conditions. The solvent was found to be the determining factor to switch the selectivity of the ketone hydrogenation. Cyclohexyl alkyl-alcohols were the products using water as a solvent.
METHODS FOR SELECTIVELY HYDROGENATING SUBSTITUTED ARENES WITH SUPPORTED ORGANOMETALLIC CATALYSTS
-
Paragraph 0036, (2016/06/28)
Methods for selectively hydrogenating substituted arenes with a supported organometallic hydrogenating catalyst are provided. An exemplary method includes contacting a substituted arene-containing reaction stream with hydrogen in the presence of a supported organometallic hydrogenating catalyst under reaction conditions effective to selectively hydrogenate the substituted arenes to the cis isomer with high selectivity. In this method, the supported organometallic hydrogenating catalyst includes a catalytically active organometallic species and a Br?nsted acidic sulfated metal oxide support.
Ring opening of decalin via hydrogenolysis on Ir/- and Pt/silica catalysts
Haas, Andreas,Rabl, Sandra,Ferrari, Marco,Calemma, Vincenzo,Weitkamp, Jens
experimental part, p. 97 - 109 (2012/07/13)
The catalytic conversion of cis-decalin was studied at a hydrogen pressure of 5.2 MPa and temperatures of 250-410 °C on iridium and platinum supported on non-acidic silica. The absence of catalytically active Br?nsted acid sites was indicated by both FT-IR spectroscopy with pyridine as a probe and the selectivities in a catalytic test reaction, viz. the hydroconversion of n-octane. On iridium/silica, decalin hydroconversion starts at ca. 250-300 °C, and no skeletal isomerization occurs. The first step is rather hydrogenolytic opening of one six-membered ring to form the direct ring-opening products butylcyclohexane, 1-methyl-2-propylcyclohexane and 1,2- diethylcyclohexane. These show a consecutive hydrogenolysis, either of an endocyclic carboncarbon bond into open-chain decanes or of an exocyclic carboncarbon bond resulting primarily in methane and C9 naphthenes. The latter can undergo a further endocyclic hydrogenolysis leading to open-chain nonanes. All individual C10 and C9 hydrocarbons predicted by this direct ring-opening mechanism were identified in the products generated on the iridium/silica catalysts. The carbon-number distributions of the hydrocracked products C9- show a peculiar shape resembling a hammock and could be readily predicted by simulation of the direct ring-opening mechanism. Platinum on silica was found to require temperatures around 350-400 °C at which relatively large amounts of tetralin and naphthalene are formed. The most abundant primary products on Pt/silica are spiro[4.5]decane and butylcyclohexane which can be readily accounted for by the well known platinum-induced mechanisms described in the literature for smaller model hydrocarbons, namely the bond-shift isomerization mechanism and hydrogenolysis of a secondary-tertiary carboncarbon bond in decalin.
IONIC ALKYLATION OF TERTIARY ALKYL HALIDES WITH TETRAALKYLSILANES
Bolestova, G. I.,Parnes, Z. N.
, p. 32 - 36 (2007/10/02)
In the reaction of tertiary alkyl halides with tetraethyl-, tetrapropyl-, tetrabutyl-, and tetraamylsilane in the presence of AlX3 the halogen atom is substituted by the alkyl group with the formation of the corresponding saturated hydrocarbons containing a quaternary carbon atom.As a result of the hydride mobility of the β-hydrogen atom in the tetraalkylsilane ionic hydrogenolysis of the substrate occurs in addition to alkylation, and the degree of hydrogenolysis depends on the alkyl substituent in the silane.
Ionization Energies and Entropies of Cycloalkanes. Kinetics of Free Energy Controlled Charge-Transfer Reactions.
Sieck, L. Wayne,Mautner, Michael
, p. 3646 - 3650 (2007/10/02)
Enthalpies and entropies of ionization (ΔH0ion and ΔS0ion) of alkylcyclohexanes, as well as cycloheptane, cyclooctane, and trans-Decalin, have been determined by charge-transfer equilibrium measurements.Values of ΔHion, in units of kcal mol-1 (or eV), range from 229.6 (9.96) for cycloheptane to 210.7 (9.14) for trans-Decalin.A major effect of alkyl substitution is observed following substitution at a site α to a tertiary hydrogen atom (as from methylcyclohexane to 1,2-dimethylcyclohexane), or following replacement of a tertiary hydrogen atom (as from methylcyclohexane to 1,1-dimethylcyclohexane).In both cases, ΔH0 ion decreases by ca. 5 kcal mol-1.Entropies of ionization are near zero for alkylcyclohexanes but range up to 5 cal deg-1 mol-1 for nonsubstituted cycloalkanes (cyclooctane).The charge-transfer reactions involving the cycloalkanes are shown to be fast processes; i.e., the sum of the reaction efficiencies (r=k/kcollision) of the forward and reverse processes is near unity.The efficiencies of these processes appear to be determined uniquely by the overall free energy change (or equilibrium constant K).Specifically, the reaction efficiencies are defined, within a factor of 2 by the relation r=K/(1+K), which can be justified by using transition-state theory applied to the decomposition of a collision complex over surfaces lacking energy barriers.These reactions are defined as intrinsically fast processes in that they are slowed only by the overall reaction thermochemistry and not by any properties or reactions of the intermediate complex.