Welcome to LookChem.com Sign In|Join Free


  • or


Post Buying Request

187737-37-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

187737-37-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 187737-37-7 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,8,7,7,3 and 7 respectively; the second part has 2 digits, 3 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 187737-37:
187 % 10 = 7
So 187737-37-7 is a valid CAS Registry Number.



According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017


1.1 GHS Product identifier

Product name propene

1.2 Other means of identification

Product number -
Other names propylene

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:187737-37-7 SDS

187737-37-7Relevant articles and documents

A pronounce approach on the catalytic performance of mesoporous natural silica toward esterification of acetic acid with iso-amyl, benzyl, and cinnamyl alcohols

Said, Abd El-Aziz A.,Abd El-Wahab, Mohamed M. M.,El-Gamal, Nadia O.,Goda, Mohamed N.

, p. 257 - 268 (2021/12/14)

Catalytic esterification of acetic acid with iso-amyl, benzyl, and cinnamyl alcohols in the liquid phase over unmodified natural silica catalyst has been studied. The virgin and calcined catalysts were characterized by thermal analyses (Thermogravimetry (TG) and diffrential thermal analysis (DTA)), X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared (FTIR), scanning electron microscope (SEM), and N2 sorption analyses. The acidity of natural silica catalysts was investigated using isopropyl alcohol dehydration and chemisorption of pyridine and dimethyl pyridine. The results indicated that most of the acidic sites are of Br?nsted type and of intermediate strength. The effect of different parameters such as reaction time, molar ratio, catalyst dosage, and calcination temperature was studied. Natural silica catalyst exhibited excellent catalytic performance with a selectivity of 100% to acetate esters formation. The maximum yields of isoamyl, benzyl, and cinnamyl acetate esters obtained in the batch conditions were 80, 81, and 83%, respectively. Whereas on adopting a simple distillation technique, these yields were successfully improved to higher values of 97, 98, and 90%, respectively. Experimental results manifested that the reaction followed Langmuir–Hinshelwood mechanism. Finally, the catalyst could be completely recycled without loss of its activity after four cycles of the esterification reactions.

Impact of composition and structural parameters on the catalytic activity of MFI type titanosilicalites

Bruk, Lev,Chernyshev, Vladimir,Khramov, Evgeny,Kravchenko, Galina,Kustov, Aleksander,Kustov, Leonid,Kuz'Micheva, Galina,Markova, Ekaterina,Pastukhova, Zhanna,Pirutko, Larisa

, p. 3439 - 3451 (2022/03/14)

Titanosilicalite of the MFI type was obtained via a hydrothermal method. Its initial and annealed at 75 °C (TS-1P(75)) and 500 °C (TS-1P(500)) forms were studied by X-ray powder diffraction (PXRD), X-ray absorption spectroscopy (XAS-method), Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), temperature-programmed ammonia desorption (TPD NH3), and pyridine adsorption (Py). The full-profile Rietveld method allowed us to observe the presence of the organic template tetrapropylammonium hydroxide (TPAOH) in the framework voids, as well as to determine the silicate module (Si/Ti = 73.5) and the distribution of Ti4+ ions over the MFI-type structure sites (Ti atoms replace Si ones in two positions: T1 and T6). The coordination numbers of titanium (CNTi = 4.6 for TS-1P and TS-1P(75), CNTi = 3.8 for TS-1P(500)) were established by the XAS-method. The catalytic activity of titanosilicalites was found in the reactions of nitrous oxide decomposition (the maximal decomposition rate is demonstrated for the TS-1P(75) sample), allyl chloride epoxidation to epichlorohydrin (the best combination of all indicators was exhibited for the TS-1P sample) and propane conversion (maximum propane conversion, and butadiene and propylene selectivity were observed in both TS-1P(75) and TS-1P(500) samples). Mechanisms for the catalytic processes are proposed. The relationship between the catalytic properties and the composition (Si/Ti), Ti4+ ion distribution over the MFI-type structure sites, the local environment of titanium ions, and the number of acid sites in the titanosilicalites are discussed.

Investigation on the Thermal Cracking and Interaction of Binary Mixture of N-Decane and Cyclohexane

Chen, Xuejiao,Pang, Weiqiang,Wang, Bo,Zhang, Ziduan,Zhou, Lingxiao,Zhu, Quan

, (2022/03/02)

Abstract: The investigation about the thermal cracking performance and interaction of different components in hydrocarbon fuels is of great significance for optimizing the formulation of high-performance hydrocarbon fuels. In this work, thermal cracking of n-decane, cyclohexane and their binary mixture were studied in a tubular reactor under different temperatures and pressures. The gas and liquid products were analyzed in detail with different gas chromatography. The main gas products of pure n-decane and cyclohexane are similar, and there is a certain difference in the main liquid products. For binary mixture, the overall conversion rate and gas yield are lower than their theoretical value. The cracking conversion rate of n-decane in binary mixture is lower than that in pure n-decane, but the opposite change occurs for cyclohexane, and the effect become more obvious as the increase of the reaction pressure. These experimental phenomena can be explained by bond dissociation energy and free radical reaction mechanism. The pressure affects the free radical reaction path, and high pressure is more conducive to bimolecular hydrogen abstraction reaction, which will lead to different product content. A law of interaction between the n-decane and cyclohexane was observed according to the experimental results. [Figure not available: see fulltext.]

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)


What can I do for you?
Get Best Price

Get Best Price for 187737-37-7