13380-94-4Relevant articles and documents
The thermal runaway of a hydrogen-transfer reaction
West, Andrew V.,Newman, Chris P.
, p. 304 - 307 (2002)
A thermal runaway is reported which occurred during the conversion of an unsaturated alcohol to the saturated ketone via internal hydrogen transfer. An unexpected and extremely rapid rise in temperature and pressure was observed when the reaction was run
Transfer Hydrogenation of Alkenes Using Ethanol Catalyzed by a NCP Pincer Iridium Complex: Scope and Mechanism
Wang, Yulei,Huang, Zhidao,Leng, Xuebing,Zhu, Huping,Liu, Guixia,Huang, Zheng
supporting information, p. 4417 - 4429 (2018/04/05)
The first general catalytic approach to effecting transfer hydrogenation (TH) of unactivated alkenes using ethanol as the hydrogen source is described. A new NCP-type pincer iridium complex (BQ-NCOP)IrHCl containing a rigid benzoquinoline backbone has been developed for efficient, mild TH of unactivated C-C multiple bonds with ethanol, forming ethyl acetate as the sole byproduct. A wide variety of alkenes, including multisubstituted alkyl alkenes, aryl alkenes, and heteroatom-substituted alkenes, as well as O- or N-containing heteroarenes and internal alkynes, are suitable substrates. Importantly, the (BQ-NCOP)Ir/EtOH system exhibits high chemoselectivity for alkene hydrogenation in the presence of reactive functional groups, such as ketones and carboxylic acids. Furthermore, the reaction with C2D5OD provides a convenient route to deuterium-labeled compounds. Detailed kinetic and mechanistic studies have revealed that monosubstituted alkenes (e.g., 1-octene, styrene) and multisubstituted alkenes (e.g., cyclooctene (COE)) exhibit fundamental mechanistic difference. The OH group of ethanol displays a normal kinetic isotope effect (KIE) in the reaction of styrene, but a substantial inverse KIE in the case of COE. The catalysis of styrene or 1-octene with relatively strong binding affinity to the Ir(I) center has (BQ-NCOP)IrI(alkene) adduct as an off-cycle catalyst resting state, and the rate law shows a positive order in EtOH, inverse first-order in styrene, and first-order in the catalyst. In contrast, the catalysis of COE has an off-cycle catalyst resting state of (BQ-NCOP)IrIII(H)[O(Et)···HO(Et)···HOEt] that features a six-membered iridacycle consisting of two hydrogen-bonds between one EtO ligand and two EtOH molecules, one of which is coordinated to the Ir(III) center. The rate law shows a negative order in EtOH, zeroth-order in COE, and first-order in the catalyst. The observed inverse KIE corresponds to an inverse equilibrium isotope effect for the pre-equilibrium formation of (BQ-NCOP)IrIII(H)(OEt) from the catalyst resting state via ethanol dissociation. Regardless of the substrate, ethanol dehydrogenation is the slow segment of the catalytic cycle, while alkene hydrogenation occurs readily following the rate-determining step, that is, β-hydride elimination of (BQ-NCOP)Ir(H)(OEt) to form (BQ-NCOP)Ir(H)2 and acetaldehyde. The latter is effectively converted to innocent ethyl acetate under the catalytic conditions, thus avoiding the catalyst poisoning via iridium-mediated decarbonylation of acetaldehyde.
Method of making carbonyl compounds
-
Page/Page column 3-4, (2008/06/13)
A method of making a carbonyl compound comprises contacting a compound comprising a secondary hydroxyl group with a basic metal oxide catalyst at a temperature sufficient to maintain the compound comprising a secondary hydroxyl group in a vapor phase.
PREPARATION OF KETONE CONTAINING CYCLIC COMPOUNDS
-
Page/Page column 10; 13, (2008/06/13)
A method of preparing a polycyclic compound containing a ketone functionality comprising: reacting a mixture comprising a catalyst , a reactant compound and an amount of water greater than or equal to 3 weight percent (wt%) based on the weight of the reac
PREPARATION OF KETONE CONTAINING CYCLIC COMPOUNDS
-
Page/Page column 3-4, (2008/06/13)
A method of preparing a polycyclic compound containing a ketone functionality comprising: reacting a mixture comprising a catalyst, a reactant compound and an amount of water greater than or equal to 3 weight percent (wt %) based on the weight of the reactant compound; wherein said catalyst comprises nickel and base and said reactant compound comprises at least two fused rings, A and B wherein ring A is a saturated ring or ring system having 5 to 7 cyclic carbons and substituted with a hydroxyl functionality and ring B is a non-aromatic unsaturated ring having 5 to 6 cyclic carbons; and converting the hydroxyl functionality of ring A to a ketone functionality and non-aromatic unsaturated ring B to a saturated ring.