134308-72-8Relevant articles and documents
Copper-Substituted Chromium Oxide Compositions, Their Preparation, and Their Use as Catalysts and Catalyst Precursors
-
Page/Page column 11, (2010/06/22)
A crystalline alpha-chromium oxide where from about 0.05 atom % to about 5 atom % of the chromium atoms in the alpha-chromium oxide lattice are replaced by divalent copper (Cu+2) atoms is disclosed. Also disclosed is a chromium-containing catalyst composition comprising as a chromium-containing component the crystalline copper-substituted alpha-chromium oxide; and methods for preparing a composition comprising the crystalline copper-substituted alpha-chromium oxide. One method involves (a) co-precipitating a solid by adding ammonium hydroxide to an aqueous solution of a soluble copper salt and a soluble trivalent chromium salt that contains at least three moles of nitrate per mole of chromium in the solution and has a copper concentration of from about 0.05 atom % to about 5 atom % of the total concentration of copper and chromium in the solution; and after at least three moles of ammonium per mole of chromium in the solution has been added to the solution, (b) collecting the co-precipitated solid formed in (a); (c) drying the collected solid; and (d) calcining the dried solid. Another method involves (a) preparing an aqueous solution of a soluble copper salt and a soluble trivalent chromium salt that contains a copper concentration of from about 0.05 atom % to about 5 atom % of the total concentration of copper and chromium in the solution, (b) evaporating the solution to dryness, and (c) calcining the dried solid. Also disclosed is a chromium-containing catalyst composition comprising a chromium-containing component prepared by treating the crystalline copper-substituted alpha-chromium oxide with a fluorinating agent; and a process for changing the fluorine distribution (i.e., content and/or arrangement) in a hydrocarbon or halogenated hydrocarbon in the presence of a catalyst. The process involves using as the catalyst a composition comprising the crystalline copper-substituted alpha-chromium oxide and/or the treated copper-substituted alpha-chromium oxide.
Preparation of composition containing chromium, oxygen, and either silver or palladium, and their use as catalysts and catalyst precursors
-
Page/Page column 8-9, (2008/12/08)
A method for preparing a catalyst composition suitable for increasing the fluorine content in a hydrocarbon or a halogenated hydrocarbon is disclosed. The method involves (a) co-precipitating a solid by adding ammonium hydroxide to an aqueous solution of a soluble trivalent chromium salt and a soluble salt of a modifier metal selected from silver and palladium, that contains at least three moles of nitrate (i.e., NO3?) per mole of chromium (i.e., Cr+3) in the solution and has a modifier metal concentration of from about 0.05 atom % to about 10 atom % of the total concentration of modifier metal and chromium in the solution to form an aqueous mixture containing co-precipitated solid and dissolved ammonium nitrate; and after at least three moles of ammonium hydroxide per mole of chromium in the solution has been added to the solution, (b) drying said aqueous mixture formed in (a); and (c) calcining the dried solid formed in (b) in an atmosphere containing at least 10% oxygen by volume (e.g., air). Also disclosed is a catalyst composition comprising alpha-chromium oxide and a modifier metal selected from silver and palladium prepared by the above method. Also disclosed is a process for increasing the fluorine content in a hydrocarbon or halogenated hydrocarbon in the presence of a catalyst; and processes using a catalyst composition comprising chromium, oxygen and a modifier metal selected from siver and palladium as essential constituent elements (e.g., a catalyst composition prepared by the above process). An azeotropic composition involving CF3CCl═CF2 and HF is also disclosed.
Compositions containing chromium, oxygen and gold, their preparation, and their use as catalysts and catalyst precursors
-
Page/Page column 13-14, (2008/12/08)
A catalyst composition is disclosed that includes chromium, oxygen, and gold as essential constituent elements. The amount of gold in the composition is from about 0.05 atom % to about 10 atom % based on the total amount of chromium and gold. Also disclosed is a process for changing the fluorine distribution (i.e., content and/or arrangement) in a hydrocarbon or halogenated hydrocarbon in the presence of the catalyst composition; and methods for preparing said catalyst composition. One preparation method involves; (a) co-precipitating a solid by adding ammonium hydroxide (aqueous ammonia) to an aqueous solution of a soluble gold salt and a soluble chromium salt that contains at least three moles of nitrate per mole of chromium in the solution and has a gold content of from about 0.05 atom % to about 10 atom % of the total content of gold and chromium in the solution to form an aqueous mixture containing co-precipitated solid; (b) drying the co-precipitated solid formed in (a); and (c) calcining the dried solid formed in (b) in an atmosphere containing at least 10% oxygen by volume. Another preparation method involves (a) impregnating solid chromium oxide with a solution of a soluble gold salt, (b) drying the impregnated chromium oxide prepared in (a); and optionally, (c) calcining the dried solid. A third preparation method involves (a) evaporating an aqueous solution of chromium(VI) oxide and a soluble gold salt to form a solid; (b) drying the solid formed in (a); and (c) calcining the dried solid formed in (b) in an atmosphere containing at least 10% oxygen by volume.
Compositions containing chromium, oxygen, and at least two modifier metals selected the group consisting of gold, silver, and palladium, their preparation, and their use as catalysts and catalyst precursors
-
Page/Page column 12-13, (2008/12/08)
A catalyst composition is disclosed that includes chromium, oxygen, and at least two of gold, silver, and palladium as essential constituent elements. The amount of modifier metals (gold, silver, and/or palladium) in the composition is from about 0.05 atom % to about 10 atom % based on the total amount of chromium and modifier metals. Also disclosed is a process for changing the fluorine distribution (i.e., content and/or arrangement) in a hydrocarbon or halogenated hydrocarbon in the presence of the catalyst composition; and methods for preparing said catalyst composition. One preparation method involves (a) co-precipitating a solid by adding ammonium hydroxide (aqueous ammonia) to an aqueous solution of soluble salts of modifier metals and a soluble chromium salt that contains at least three moles of nitrate per mole of chromium in the solution and has a modifier metal content of from about 0.05 atom % to about 10 atom % of the total content of modifier metals and chromium in the solution to form an aqueous mixture containing co-precipitated solid; (b) drying the co-precipitated solid formed in (a); and (c) calcining the dried solid formed in (b) in an atmosphere containing at least 10% oxygen by volume. Another preparation method involves (a) impregnating solid chromium oxide with a solution of a soluble modifier metal salts; (b) drying the impregnated chromium oxide prepared in (a); and optionally; (c) calcining the dried solid. Yet another preparation method involves mixing multiple compositions, each comprising chromium, oxygen, and at least one modifier metal.
PROCESSES FOR THE PRODUCTION OF FLUOROPROPANES AND HALOPROPENES
-
Page/Page column 15-17, (2008/12/05)
A process is disclosed for making CF3CF2CH3, CF3CF=CH2 and/or CF3CCI=CH2. The process involves reacting at least one starting material selected from the group consisting of halopropanes of the formula CX3CH2CH2X, halopropenes of the formula CX3CH=CH2 and halopropenes of the formula CX2=CHCH2X, wherein each X is independently F or Cl, with HF and CI2 in a reaction zone to produce a product mixture comprising HF, HCI, CF3CF2CH3, CF3CF=CH2, and CFsCCI=CH2; and recovering the CF3CF2CH3, CF3CF=CH2 and/or CFsCCI=CH2 from the product mixture. Also disclosed is a process for making CF3CH2CHF2, CFsCH=CHF, and/or CFaCH=CHCI. This process involves reacting at least one starting material selected from the group consisting of halopropenes of the formula CX3CH=CH2 and halopropenes of the formula CX2=CHCH2X, wherein each X is independently F or Cl, with HF and CI2 in a reaction zone to produce a product mixture comprising HF, HCI, CF3CH2CHF2, CFsCH=CHF and CF3CH=CHCI; and recovering the CF3CH2CHF2, CFsCH=CHF, and/or CF3CH=CHCI from the product mixture. The molar ratio of HF to the total amount of starting materials fed to the reaction zone for both of these processes is at least stoichiometric, and the molar ratio of Cl2 to total amount of starting material fed to the reaction zone for both of these processes is 2:1 or less.
PROCESS FOR THE PREPARATION OF 1,1,1,3,3-PENTAFLUOROPROPANE AND/OR 1,1,1,3,3,3,-HEXAFLUOROPROPANE
-
Page/Page column 12-14, (2008/06/13)
A process for the manufacture of CF3CH2CHF2 and/or CF3CH2CF3 is disclosed. The process involves (a) reacting HF and at least one halopropene of the formula CX3CCI=CCIX (where each X is independently F or Cl) to produce a product including both CF3CCI=CF2 and CF3CHCICF3; (b) reacting CF3CCI=CF2 and/or CF3CHCICF3 produced in (a) with hydrogen to produce a product including CF3CH2CHF2 and/or CF3CH2CF3; and (c) recovering CF3CH2CHF2 and/or CF3CH2CF3 from the product produced in (b). In (a), the CF3CCI=CF2 and CF3CHCICF3 are produced in the presence of a fluorination catalyst comprising at least one chromium-containing component selected from (i) a crystalline alpha- chromium oxide where at least 0.05 atom % of the chromium atoms in the alpha-chromium oxide lattice are replaced by divalent copper, and (ii) a chromium-containing composition of (i) which has been treated with a fluorinating agent.
PROCESS FOR THE PREPARATION OF 1,3,3,3-TETRAFLUOROPROPENE AND/OR 1,1,3,3,3-PENTAFLUOROPROPENE
-
Page/Page column 13-15, (2008/06/13)
A process for the manufacture of CF3CH=CHF and/or CF3CH=CF2 is disclosed. The process involves involves (a) reacting HF and at least one halopropene of the formula CX3CCI=CCIX (where each X is independently F or CI) to produce a product including both CF3CCI=CF2 and CF3CHCICF3; (b) reacting CF3CCI=CF2 and/or CF3CHCICF3 produced in (a) with hydrogen to produce a product including CF3CH2CHF2 and/or CF3CH2CF3; (c) dehydrofluorinating CF3CH2CHF2 and/or CF3CH2CF3 produced in (b) to produce a product comprising CF3CH=CHF and/or CF3CH=CF2; and (d) recovering CF3CH=CHF and/or CF3CH=CF2 from the product produced in (c). In (a), the CF3CCI=CF2 and CF3CHCICF3 are produced in the presence of a fluorination catalyst comprising at least one chromium-containing component selected from (i) a crystalline alpha-chromium oxide where at least 0.05 atom % of the chromium atoms in the alpha-chromium oxide lattice are replaced by divalent copper, and (ii) a chromium-containing composition of (i) which has been treated with a fluorinating agent.
PROCESS FOR THE PRODUCTION OF 1,1,1,3,3,3-HEXAFLUOROPROPANE
-
Page/Page column 14-15, (2008/06/13)
A process for the preparation of 1,1,1,3,3,3-hexafluoropropane is disclosed. The process involves (a) contacting at least one halopropane of the formula CF3CH2CHyX3-y (where each X is independently F, Cl or Br, and y is 3, 2, or 1) with Cl?2#191 in the presence of light or a free radical initiator to produce a mixture comprising CF3CH2CCIyX3-y; (b) contacting the CF3CH2CCIyX3-y produced in step (a) with HF, optionally in the presence of a fluorination catalyst, to produce a product mixture comprising CF3CH2CF3; and (c) recovering CF3CH2CF3 from the mixture produced in step (b).
PROCESS FOR THE PREPARATION OF 1,1,1,3,3-PENTAFLUOROPROPANE AND 1,1,1,2,3-PENTAFLUOROPROPANE
-
Page/Page column 17; 19, (2008/06/13)
A process is disclosed for the manufacture of CF3CH2CHF2 and CF3CHFCH2F. The process involves (a) reacting hydrogen fluoride, chlorine, and at least one halopropene of the formula CX3CCl=CClX (where each X is independently F or Cl) to produce a product including both CF3CCl2CClF2 and CF3CClFCCl2F; (b) reacting CF3CCl2CClF2 and CF3CClFCCl2F produced in (a) with hydrogen to produce a product including both CF3CH2CHF2, and CF3CHFCH2F; and (c) recovering CF3CH2CHF2 and CF3CHFCH2F from the product produced in (b). In (a), the CF3CCl2CClF2 and CF3CClFCCl2F are produced in the presence of a chlorofluorination catalyst including a ZnCr2O4/crystalline α-chromium oxide composition, a ZnCr2O4/crystalline α-chromium oxide composition which has been treated with a fluorinating agent, a zinc halide/α-chromium oxide composition and/or a zinc halide/α-chromium oxide composition which has been treated with a fluorinating agent.
PROCESS FOR THE PREPARATION OF 1,1,1,3,3-PENTAFLUOROPROPANE AND 1,1,1,3,3,3-HEXAFLUOROPROPANE
-
Page/Page column 13-14; 15, (2008/06/13)
A process for the manufacture of CF3CH2CHF2 and CF3CH2CF3 is disclosed. The process involves (a) reacting HF and at least one halopropene of the formula CX3CCl=CClX (where each X is independently F or Cl) to produce a product including both CF3CCl=CF2 and CF3CHClCF3; (b) reacting CF3CCl=CF2 and CF3CHClCF3 produced in (a) with hydrogen to produce a product including both CF3CH2CHF2 and CF3CH2CF3; and (c) recovering CF3CH2CHF2 and CF3CH2CF3 from the product produced in (b). In (a), the CF3CCl=CF2 and CF3CHClCF3 are produced in the presence of a fluorination catalyst including a ZnCr2O4/crystalline α-chromium oxide composition, a ZnCr2O4/crystalline α-chromium oxide composition which has been treated with a fluorinating agent, a zinc halide/α-chromium oxide composition and/or a zinc halide/α-chromium oxide composition which has been treated with a fluorinating agent.