141942-85-0Relevant articles and documents
Biphasic Bioelectrocatalytic Synthesis of Chiral β-Hydroxy Nitriles
Dong, Fangyuan,Chen, Hui,Malapit, Christian A.,Prater, Matthew B.,Li, Min,Yuan, Mengwei,Lim, Koun,Minteer, Shelley D.
, p. 8374 - 8382 (2020)
Two obstacles limit the application of oxidoreductase-based asymmetric synthesis. One is the consumption of high stoichiometric amounts of reduced cofactor. The other is the low solubility of organic substrates, intermediates, and products in the aqueous phase. In order to address these two obstacles to oxidoreductase-based asymmetric synthesis, a biphasic bioelectrocatalytic system was constructed and applied. In this study, the preparation of chiral β-hydroxy nitriles catalyzed by alcohol dehydrogenase (AdhS) and halohydrin dehalogenase (HHDH) was investigated as a model bioelectrosynthesis, since they are high-value intermediates in statin synthesis. Diaphorase (DH) was immobilized by a cobaltocene-modified poly(allylamine) redox polymer on the electrode surface (DH/Cc-PAA bioelectrode) to achieve effective bioelectrocatalytic NADH regeneration. Since AdhS is a NAD-dependent dehydrogenase, the diaphorase-modified biocathode was used to regenerate NADH to support the conversion from ethyl 4-chloroacetoacetate (COBE) to ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE) catalyzed by AdhS. The addition of methyl tert-butyl ether (MTBE) as an organic phase not only increased the uploading of COBE but also prevented the spontaneous hydrolysis of COBE, extended the lifetime of DH/Cc-PAA bioelectrode, and increased the Faradaic efficiency and the concentration of generated (R)-ethyl-4-cyano-3-hydroxybutyrate ((R)-CHCN). After 10 h of reaction, the highest concentration of (R)-CHCN in the biphasic bioelectrocatalytic system was 25.5 mM with 81.2% enantiomeric excess (eep). The conversion ratio of COBE achieved 85%, which was 8.8 times higher than that achieved with the single-phase system. Besides COBE, two other substrates with aromatic ring structures were also used in this biphasic bioelectrocatalytic system to prepare the corresponding chiral β-hydroxy nitriles. The results indicate that the biphasic bioelectrocatalytic system has the potential to produce a variety of β-hydroxy nitriles with different structures.
Efficient biosynthesis of ethyl (R)-3-hydroxyglutarate through a one-pot bienzymatic cascade of halohydrin dehalogenase and nitrilase
Yao, Peiyuan,Wang, Lei,Yuan, Jing,Cheng, Lihua,Jia, Rongrong,Xie, Meixian,Feng, Jinhui,Wang, Min,Wu, Qiaqing,Zhu, Dunming
, p. 1438 - 1444 (2015)
An effective one-pot bienzymatic synthesis of ethyl (R)-3-hydroxyglutarate (EHG) from ethyl (S)-4-chloro-3-hydroxybutyrate (ECHB) was achieved by using recombinant Escherichia coli cells expressing separately or co-expressing a mutant halohydrin dehalogenase gene from Agrobacterium radiobacter AD1 and a nitrilase gene from Arabidopsis thaliana. The activity of nitrilase was inhibited by high concentration of ECHB and NaCN. Consequently, the one-pot one-step process was implemented by fed-batch of ECHB and NaCN with high accumulative product concentration (up to 0.9 mol L-1). The biotransformation of ECHB to EHG was successfully achieved at 1.2 mol L-1 substrate concentration by a one-pot two-step process. As such, this one-pot bienzymatic transformation should be useful in synthesizing these important optical pure β-hydroxycarboxylic acids.
Nitrilases, nucleic acids encoding them and methods for making and using them
-
, (2016/01/09)
The invention relates to nitrilases and to nucleic acids encoding the nitrilases. In addition methods of designing new nitrilases and method of use thereof are also provided. The nitrilases have increased activity and stability at increased pH and temperature.
Synthesis of ethyl (R)-4-cyano-3-hydroxybutyrate in high concentration using a novel halohydrin dehalogenase HHDH-PL from Parvibaculum lavamentivorans DS-1
Wan, Nan-Wei,Liu, Zhi-Qiang,Huang, Kai,Shen, Zhen-Yang,Xue, Feng,Zheng, Yu-Guo,Shen, Yin-Chu
, p. 64027 - 64031 (2015/02/19)
We identified and characterized a novel halohydrin dehalogenase HHDH-PL from Parvibaculum lavamentivorans DS-1. Study of substrate specificity indicated that HHDH-PL possessed a high activity toward ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE). After optimizations of the pH and temperature, whole cell catalysis of HHDH-PL was applied to the synthesis of ethyl (R)-4-cyano-3-hydroxybutyrate (HN) at 200 g L-1 of (S)-CHBE, which gave 95% conversion and 85% yield in 14 h.
Multi-enzymatic biosynthesis of chiral β-hydroxy nitriles through co-expression of oxidoreductase and halohydrin dehalogenase
Chen, Shao-Yun,Yang, Chen-Xi,Wu, Jian-Ping,Xu, Gang,Yang, Li-Rong
, p. 3179 - 3190 (2013/12/04)
To establish a system for the efficient one bacterial multi-enzymatic biosynthesis of both (R)- and (S)-β-hydroxy nitriles, we co-expressed alcohol dehydrogenases with opposite stereoselectivities, cofactor regeneration enzymes, and a halohydrin dehalogenase in Escherichia coli. By researching cofactor recycling and various co-expression strategies and by selecting and engineering the halohydrin dehalogenase, we engineered two E. coli strains, which were subsequently used in a cascade of reactions to produce chiral β-hydroxy nitriles with high enantiomeric excess directly from prochiral α-halo ketones. Three valuable pharmaceutical intermediates were prepared by means of this catalytic system, and substrate conversion reached about >99%. More importantly, the system is of low cost because there is no need for expensive cofactors or for expression and purification of the component enzymes. Copyright
Biocatalytic and Structural Properties of a Highly Engineered Halohydrin Dehalogenase
Schallmey, Marcus,Floor, Robert J.,Hauer, Bernhard,Breuer, Michael,Jekel, Peter A.,Wijma, Hein J.,Dijkstra, Bauke W.,Janssen, Dick B.
, p. 870 - 881 (2013/07/25)
Two highly engineered halohydrin dehalogenase variants were characterized in terms of their performance in dehalogenation and epoxide cyanolysis reactions. Both enzyme variants outperformed the wild-type enzyme in the cyanolysis of ethyl (S)-3,4-epoxybutyrate, a conversion yielding ethyl (R)-4-cyano-3-hydroxybutyrate, an important chiral building block for statin synthesis. One of the enzyme variants, HheC2360, displayed catalytic rates for this cyanolysis reaction enhanced up to tenfold. Furthermore, the enantioselectivity of this variant was the opposite of that of the wild-type enzyme, both for dehalogenation and for cyanolysis reactions. The 37-fold mutant HheC2360 showed an increase in thermal stability of 8°C relative to the wild-type enzyme. Crystal structures of this enzyme were elucidated with chloride and ethyl (S)-3,4-epoxybutyrate or with ethyl (R)-4-cyano-3-hydroxybutyrate bound in the active site. The observed increase in temperature stability was explained in terms of a substantial increase in buried surface area relative to the wild-type HheC, together with enhanced interfacial interactions between the subunits that form the tetramer. The structures also revealed that the substrate binding pocket was modified both by substitutions and by backbone movements in loops surrounding the active site. The observed changes in the mutant structures are partly governed by coupled mutations, some of which are necessary to remove steric clashes or to allow backbone movements to occur. The importance of interactions between substitutions suggests that efficient directed evolution strategies should allow for compensating and synergistic mutations during library design.
Experimental and computation studies on Candida antarctica lipase B-catalyzed enantioselective alcoholysis of 4-bromomethyl-β-lactone leading to enantiopure 4-bromo-3-hydroxybutanoate
Lim, Jung Yun,Jeon, Nan Young,Park, A-Reum,Min, Bora,Kim, Bum Tae,Park, Seongsoon,Lee, Hyuk
, p. 1808 - 1816 (2013/07/19)
Both enantiomers of optically pure 4-bromo-3-hydroxybutanoate, which is an important chiral building block in the syntheses of various biologically active compounds including statins, were synthesized from rac-4-bromomethyl-β- lactone through kinetic resolution. Candida antarctica lipase B (CAL-B) enantioselectively catalyzes the ring opening of the β-lactone with ethanol to yield ethyl (R)-4-bromo-3-hydroxybutanoate with high enantioselectivity (E>200). The unreacted (S)-4-bromomethyl-β-lactone was converted to ethyl (S)-4-bromo-3-hydroxybutanoate (>99% ee), which can be further transformed to ethyl (R)-4-cyano-3-hydroxybutanoate, through an acid-catalyzed ring opening in ethanol. Molecular modeling revealed that the stereocenter of the fast-reacting enantiomer, (R)-bromomethyl-β-lactone, is ~2 A from the reacting carbonyl carbon. In addition, the slow-reacting enantiomer, (S)-4-bromomethyl-β-lactone, encounters steric hindrance between the bromo substituent and the side chain of the Leu278 residue, while the fast-reacting enantiomer does not have any steric clash. Copyright
Selective reduction of aldehydes and ketones to alcohols with ammonia borane in neat water
Shi, Lei,Liu, Yingying,Liu, Qingfeng,Wei, Bin,Zhang, Guisheng
experimental part, p. 1372 - 1375 (2012/06/04)
Chemoselective reduction of various carbonyl compounds to alcohols with ammonia borane (AB), a nontoxic, environmentally benign, and easily handled reagent, in neat water was achieved in quantitative conversions and high isolated yields. Interestingly, α- and β-keto esters were selectively reduced to corresponding hydroxyl esters by AB, while diols were obtained when sodium borohydride was used as a reducing agent. The procedure is also compatible with the presence of a variety of base-labile protecting groups, such as tosyl, acetyl, benzoyl, ester groups, and acid-labile protecting groups such as trityl and TBDMS groups, and others, such as the unsaturated double bond, nitro and cyano groups. Finally, a kilo scale reaction of methyl benzoylformate with AB was conducted in water and gave methyl mandelate in 94% yield.
A new practical synthesis of ethyl (R)-(-)-4-Cyano-3-hydroxybutyrate from (S)-3-chloro-1,2-propanediol
Jiang, Chengjun,Hong, Huabin
, p. 520 - 521 (2012/11/06)
A practical chemical synthesis of ethyl (R)-(-)-4-Cyano-3- hydroxybutyrate((R)-CNHB) has been accomplished from (S)-3-chloro-1,2- propanediol, which is a main by-product originating from (S,S)-Salen Co(III) catalyzed by hydrolytic kinetic resolution (HKR) of epichlorohydrin. The new synthetic approach demonstrated an efficient utilization of organic by-product for the asymmetric synthesis of the intermediate of atorvastatin.