14443-33-5Relevant articles and documents
N -Arylation of (hetero)arylamines using aryl sulfamates and carbamates via C-O bond activation enabled by a reusable and durable nickel(0) catalyst
Dindarloo Inaloo, Iman,Majnooni, Sahar,Eslahi, Hassan,Esmaeilpour, Mohsen
, p. 13266 - 13278 (2020/10/07)
An effective and general aryl amination protocol has been developed using a magnetically recoverable Ni(0) based nanocatalyst. This new stable catalyst was prepared on Fe3O4@SiO2 modified by EDTA and investigated by FT-IR, EDX, TEM, XRD, DLS, FE-SEM, XPS, NMR, TGA, VSM, ICP and elemental analysis techniques. The reaction proceeded via carbon-oxygen bond cleavage of (hetero)aryl carbamates and sulfamates under simple and mild conditions without the use of any external ligands. This method demonstrated functional group tolerance in the N-arylation of various nitrogen-containing compounds as well as aliphatic amines, anilines, pyrroles, pyrazoles, imidazoles, indoles, and indazoles with good to excellent yields. Furthermore, the catalyst could be easily recovered by using an external magnetic field and directly reused at least six times without notable reduction in its activity. This journal is
Direct N9-arylation of purines with aryl halides
Larsen, Anders Foller,Ulven, Trond
supporting information, p. 4997 - 4999 (2014/05/06)
An efficient method for N-arylation of purines is reported. The N-arylation is catalysed by Cu(i) and 4,7-bis(2-hydroxyethylamino)-1,10-phenanthroline (BHPhen) in aqueous DMF or ethanol. The reaction generally proceeds with high selectivity for the N
New 7-methylguanine derivatives targeting the influenza polymerase PB2 cap-binding domain
Pautus, Stéphane,Sehr, Peter,Lewis, Joe,Fortuné, Antoine,Wolkerstorfer, Andrea,Szolar, Oliver,Guilligay, Delphine,Lunardi, Thomas,Décout, Jean-Luc,Cusack, Stephen
, p. 8915 - 8930 (2013/12/04)
The heterotrimeric influenza virus polymerase performs replication and transcription of viral RNA in the nucleus of infected cells. Transcription by "cap-snatching" requires that host-cell pre-mRNAs are bound via their 5′ cap to the PB2 subunit. Thus, the PB2 cap-binding site is potentially a good target for new antiviral drugs that will directly inhibit viral replication. Docking studies using the structure of the PB2 cap-binding domain suggested that 7-alkylguanine derivatives substituted at position N-9 and N-2 could be good candidates. Four series of 7,9-di- and 2,7,9-trialkyl guanine derivatives were synthesized and evaluated by an AlphaScreen assay in competition with a biotinylated cap analogue. Three synthesized compounds display potent in vitro activity with IC50 values lower than 10 μM. High-resolution X-ray structures of three inhibitors in complex with the H5N1 PB2 cap-binding domain confirmed the binding mode and provide detailed information for further compound optimization.
Efficient N-arylation and N-alkenylation of the five DNA/RNA nucleobases
Jacobsen, Mikkel F.,Knudsen, Martin M.,Gothelf, Kurt V.
, p. 9183 - 9190 (2007/10/03)
(Chemical Equation Presented) A general approach to N-arylation and N-alkenylation of all five DNA/RNA nucleobases at the nitrogen atom normally attached to the sugar moiety in DNA or RNA has been developed. Various protected or masked nucleobases engaged