14907-27-8Relevant articles and documents
Convenient method for the synthesis of some novel chiral methyl 2-(2-oxo-2H-benzo[e][1,3]oxazin-3(4H)-yl)propanoate derivatives and biological evaluation of their antioxidant, cytotoxic, and molecular docking properties
Matam, Sivakumar,Kaliyan, Prabakaran,Selvaraj, Loganathan,Muthu, Seenivasa Perumal,Lohanathan, Bharathi Priya,Viswanadhan, Vijaya Padma,Makala, Himesh,Venkatasubramanian, Ulaganathan
supporting information, p. 569 - 579 (2020/12/11)
Ten chiral methyl 2-(2-oxo-2H-benzo[e][1,3]oxazin-3(4H)-yl)propanoate derivatives 6a-6j have been synthesized from optically pure amino methyl phenol 5 and 4-nitrophenyl chloroformate. These derivatives 6a-6j are characterized by 1H NMR, 13C NMR, FT-IR, and HRMS spectral techniques. Optical purity of these derivatives was confirmed by chiral HPLC method. Ten synthesized ester derivatives 6a-6j were screened for their in vitro antioxidant activity. Among the compounds 6b-d and 6h-j have exhibited comparable antioxidant activity with ascorbic acid as a standard. Compounds 6a and 6e-g have shown moderate antioxidant activity. Further, the in vitro cytotoxicity of these compounds were studied through MTT cell proliferation assay in addition the effect on LDH leakage and NO release. Among the derivatives, 6j showed extremely best activity and the IC50 value (12.54 ± 0.71 μM) is very close to doxorubicin (7.2 ± 0.58 μM) as a standard. Compounds 6b, 6h, and 6i showed better inhibition next to compound 6j on the viability of HepG2 cells with an IC50 value (μM) of 56.02 ± 1.4, 41.76 ± 0.58, and 38.17 ± 0.34, respectively. Also, molecular docking studies have been carried out with STAT-3 (PDB ID: 1BG1) and BCL-2 (PDB ID: 4AQ3) proteins against the four active compounds 6b, 6h, 6i, and 6j. The binding energies of the tested compounds were in the range of ?7.76 to ?8.41 kcal/mol, which is very close to doxorubicin (?8.53 kcal/mol) as a standard. These molecular docking results are in good agreement with the in vitro studies.
Preparation method of phosphodiesterase inhibitor
-
Paragraph 0016; 0026-0040, (2021/11/03)
The invention discloses a preparation method of a phosphodiesterase inhibitor and belongs to the field of medicinal chemistry. The preparation method comprises the following steps: starting the raw material 1 and methanol to prepare the intermediate I without adding organic solvent crystallization. After the series of centrifugation, washing and drying, the intermediate II is directly condensed and cyclized with piperonal, and a final product tadalafil is prepared by chloroacetylation, aminolysis and refining steps. The method improves the product yield and quality, greatly shortens the reaction period, reduces the operation steps and the production cost, and is suitable for industrial mass production.
Lithocholic acid-tryptophan conjugate (UniPR126) based mixed micelle as a nano carrier for specific delivery of niclosamide to prostate cancer via EphA2 receptor
Jannu, Arun Kumar,Puppala, Eswara Rao,Gawali, Basveshwar,Syamprasad,Alexander, Amit,Marepally, Srujan,Chella, Naveen,Gangasani, Jagadeesh Kumar,Naidu
, (2021/07/13)
Targeted delivery of chemotherapeutic agents is considered a prominent strategy for the treatment of cancer due to its site-specific delivery, augmented penetration, bioavailability, and improved therapeutic efficiency. In the present study, we employed UniPR126 as a carrier in a mixed nanomicellar delivery system to target and deliver anticancer drug NIC specifically to cancer cells via EphA2 receptors as these receptors are overexpressed in cancer cells but not in normal cells. The specificity of the carrier was confirmed from the significant enhancement in the uptake of coumarin-6 loaded mixed nanomicelle by EphA2 highly expressed PC-3 cells compared to EphA2 low expressed H4 cells. Further, niclosamide-loaded lithocholic acid tryptophan conjugate-based mixed nanomicelle has shown significant synergistic cytotoxicity in PC-3 but not in H4 cells. In vivo anticancer efficacy data in PC-3 xenograft revealed a significant reduction in the tumor volume (66.87%) with niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle, where pure niclosamide showed just half of the activity. Molecular signaling data by western blotting also indicated that niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle interfered with the EphA2 receptor signaling and inhibition of the Wnt/beta-catenin pathway and resulted in the synergistic anticancer activity compared to niclosamide pure drug.
Translation of Mycobacterium Survival Strategy to Develop a Lipo-peptide based Fusion Inhibitor**
Sardar, Avijit,Lahiri, Aritraa,Kamble, Mithila,Mallick, Amirul I.,Tarafdar, Pradip K.
supporting information, p. 6101 - 6106 (2021/02/01)
The entry of enveloped virus requires the fusion of viral and host cell membranes. An effective fusion inhibitor aiming at impeding such membrane fusion may emerge as a broad-spectrum antiviral agent against a wide range of viral infections. Mycobacterium survives inside the phagosome by inhibiting phagosome–lysosome fusion with the help of a coat protein coronin 1. Structural analysis of coronin 1 and other WD40-repeat protein suggest that the trp-asp (WD) sequence is placed at distorted β-meander motif (more exposed) in coronin 1. The unique structural feature of coronin 1 was explored to identify a simple lipo-peptide sequence (myr-WD), which effectively inhibits membrane fusion by modulating the interfacial order, water penetration, and surface potential. The mycobacterium inspired lipo-dipeptide was successfully tested to combat type 1 influenza virus (H1N1) and murine coronavirus infections as a potential broad-spectrum antiviral agent.
A fast and direct iodide-catalyzed oxidative 2-selenylation of tryptophan
Gao, Yu-Ting,Liu, Shao-Dong,Cheng, Liang,Liu, Li
supporting information, p. 3504 - 3507 (2021/04/12)
A metal-free 2-selenylation of tryptophan derivatives is reported, where the use of iodide as the catalyst and oxone as the oxidant is key to obtain high yields. Various functional groups within the di-seleny and the indole ring are tolerated, and no racemization is generally observed.
Ribose conversion with amino acids into pyrraline platform chemicals-expeditious synthesis of diverse pyrrole-fused alkaloid compounds
Cho, Soohyeon,Gu, Lina,In, Ik Joon,Kim, Hakwon,Koo, Sangho,Lee, Taehoon,Wu, Bo
, p. 31511 - 31525 (2021/11/30)
One-pot conversion of sustainable d-ribose with l-amino acid, methyl esters produced pyrrole-2-carbaldehydes 5 in reasonable yields (32-63%) under pressurized conditions of 2.5 atm at 80 °C. The value-added pyrraline compounds 5 as platform chemicals were utilized for quick installation of poly-heterocyclic cores for the development of pyrrole-motif natural and artificial therapeutic agents. A pyrrole-fused piperazin-2-one scaffold 6 was prepared by reductive amination of pyrralines 5 with benzylamine. While further cyclization of pyrralines 5 with ethane-1,2-diamine produced pyrrolo-piperazin-2-ones 7 with an extra imidazolidine ring, the reaction with 2-amino alcohols derived from natural l-amino acids, alanine, valine, and phenylalanine, respectively provided pyrrolo-piperazin-2-ones 8, 9, and 10 with oxazolidine as the third structural core. Cell viability and an anti-inflammatory effect of the synthesized compounds were briefly tested by the MTT method and the Griess assay, among which 8h and 10g exhibited significant anti-inflammatory effects with negligible cell toxicity.
(2S, 3R)-3-amino-2-hydroxy-4-phenylbutyrylamide derivative as well as preparation method and application thereof
-
Paragraph 0047; 0124-0128, (2021/02/10)
The invention discloses a (2S, 3R)-3-amino-2-hydroxy-4-phenylbutyrylamide derivative shown as a formula (I) or an optical isomer, a diastereomer and racemate mixture and pharmaceutically acceptable salt thereof as well as a preparation method and application of the (2S, 3R)-3-amino-2-hydroxy-4-phenylbutyrylamide derivative. It is shown by comparison of results of a positive control group and a model group on lymphedema prevention experiments that the compound disclosed in the invention shows obvious anti-edema activity.
Synthesis and anti-tumor activity of marine alkaloids
Chen, Guangying,Huang, Gangliang,Zhou, Shiyang
, (2021/04/15)
Marine alkaloids were divided into five categories from the perspective of anti-tumor activity. The optimization process, chemical synthesis, anti-tumor activity evaluation and structure–activity relationship of various compounds were discussed.
Synthesis and antimalarial activity of (S)-methyl-(7-chloroquinolin-4-ylthio)acetamidoalquilate derivatives
Colmenarez, Custodiana,Acosta, María,Rodríguez, Miguel,Charris, Jaime
, p. 161 - 166 (2020/01/09)
The synthesis of five new (S)-methyl-(7-chloroquinolin-4-ylthio)acetamidoalquilate derivatives is carried out under a modified version of the Steglich esterification reaction between different l-amino acid methyl esters and 2-(7-chloroquinolin-4-ylthio)acetic acid. Two of the compounds showed significant inhibition (>50%) of β-hematin formation. The two active structures were tested in vivo as potential antimalarials in mice infected with Plasmodium berghei ANKA, a chloroquine susceptible strain. Compounds 6b and 6e exhibited antimalarial activity comparable to that of chloroquine.
Enhancement of the chiroptical response of α-amino acids via N-substitution for molecular structure determination using vibrational circular dichroism
Polavarapu, Prasad L.,Santoro, Ernesto,Covington, Cody L.,Raghavan, Vijay
supporting information, p. 564 - 578 (2020/03/13)
The chiroptical response in the form of vibrational circular dichroism (VCD) in the midinfrared region is found to be enhanced when a hydrogen of amino group of l-tryptophan is substituted with acetyl, acryloyl, or maleyl group. The order of preference for VCD enhancement is found to be acryloyl > acetyl > maleyl group. The resulting experimental VCD spectra are also found to be satisfactorily reproduced by the quantum mechanical (QM) predicted spectra. The QM predicted spectra were simulated using the conformer populations, (a) predicted by Gibbs energies and (b) optimized to maximize the similarity between experimental and predicted VCD spectra. It is found that the conformer populations predicted by Gibbs energies do not yield the maximum possible similarity between experimental and the QM predicted spectra. This work identifies the N-substitution of α-amino acids and determining the conformer populations that best reproduce the experimental spectra as two new approaches for molecular structure determination.