Welcome to LookChem.com Sign In|Join Free

CAS

  • or
Benzaldehyde, 3-fluoro-, oxime, (E)- (9CI) is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

154238-36-5 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 154238-36-5 Structure
  • Basic information

    1. Product Name: Benzaldehyde, 3-fluoro-, oxime, (E)- (9CI)
    2. Synonyms: Benzaldehyde, 3-fluoro-, oxime, (E)- (9CI);(E)-N-[(3-fluorophenyl)methylidene]hydroxylamine
    3. CAS NO:154238-36-5
    4. Molecular Formula: C7H6FNO
    5. Molecular Weight: 139.1270432
    6. EINECS: N/A
    7. Product Categories: OXIME
    8. Mol File: 154238-36-5.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: N/A
    3. Flash Point: N/A
    4. Appearance: /
    5. Density: N/A
    6. Refractive Index: N/A
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. CAS DataBase Reference: Benzaldehyde, 3-fluoro-, oxime, (E)- (9CI)(CAS DataBase Reference)
    10. NIST Chemistry Reference: Benzaldehyde, 3-fluoro-, oxime, (E)- (9CI)(154238-36-5)
    11. EPA Substance Registry System: Benzaldehyde, 3-fluoro-, oxime, (E)- (9CI)(154238-36-5)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 154238-36-5(Hazardous Substances Data)

154238-36-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 154238-36-5 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,5,4,2,3 and 8 respectively; the second part has 2 digits, 3 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 154238-36:
(8*1)+(7*5)+(6*4)+(5*2)+(4*3)+(3*8)+(2*3)+(1*6)=125
125 % 10 = 5
So 154238-36-5 is a valid CAS Registry Number.

154238-36-5Relevant articles and documents

Synthesis of new coumarin tethered isoxazolines as potential anticancer agents

Lingaraju, Gejjalagere S.,Balaji, Kyathegowdanadoddi S.,Jayarama, Shankar,Anil, Seegehalli M.,Kiran, Kuppalli R.,Sadashiva, Maralinganadoddi P.

, p. 3606 - 3612 (2018)

A series of new coumarin tethered isoxazolines (7a-l) were synthesized and evaluated for their cytotoxic potency against human melanoma cancer cell line (UACC 903) as well as fibroblast normal cell line (FF2441). Preliminary results revealed that some of these coumarin tethered isoxazolines 7b, 7c, 7f and 7j exhibited significant antiproliferative effect against human melanoma cancer (UACC 903) with IC50 values of 8.8, 10.5, 9.2 and 4.5 μM respectively. However, compound 7c was non-toxic to normal human cells at the tested concentration. Further, we have chosen compound 7c to check its efficacy in Ehrlich Ascites Carcinoma animal model in-vivo for its antitumor and antiangiogenic properties. Our lead compound significantly reduced the cell viability, body weight, ascites volume and downregulated the formation of neovasculature such as regression of tumor volume. The present study indicates the scope of developing into potent anticancer drug in near future.

Synthesis and biological evaluation of novel 1-(aryl-aldehyde-oxime)uracil derivatives as a new class of thymidine phosphorylase inhibitors

Zhao, Shuyue,Li, Ke,Jin, Yi,Lin, Jun

, p. 41 - 51 (2018)

A novel series of 1-(aryl aldehyd oxime) uracil derivatives were synthesized, characterized and evaluated for its inhibitory activity against thymidine phosphorylase. Among them, the compound 8d, 8e, 8f, 8g and 8l displayed potent thymidine phosphorylase

On the mixed oxides-supported niobium catalyst towards benzylamine oxidation

Granato, álisson Silva,de Carvalho, Gustavo S. Gon?alves,Fonseca, Carla G.,Adrio, Javier,Leit?o, Alexandre A.,Amarante, Giovanni Wilson

, p. 118 - 125 (2020/09/11)

A series of mixed oxides-supported niobium-based catalysts has been synthesized and applied towards oxidation reactions of benzylamine derivatives. Under the optimized reaction conditions, the selectivity to oxime enhanced, leading to the main product with up to 72 %. Moreover, even α-substituted benzylamines were well tolerated and led to oximes in good isolated yields. It is important to mention; four equivalents of the harmless and inexpensive hydrogen peroxide were employed as oxidizing agent. Mechanism hypothesis suggested that the reaction proceed to selective benzylamine oxidation into nitroso intermediate, following by formation of the corresponding oxime tautomer mediated by an unstable water produced by NbOx supported catalyst. This consists the first mixed oxides-supported niobium-based catalyst for selective oxidation of benzylamines to oximes.

Design, synthesis, in vitro and in silico evaluation of new 3-phenyl-4,5-dihydroisoxazole-5-carboxamides active against drug-resistant mycobacterium tuberculosis

Gaikwad, Nikhil Baliram,Afroz, Pathan,Ahmad, Mohammad Naiyaz,Kaul, Grace,Shukla, Manjulika,Nanduri, Srinivas,Dasgupta, Arunava,Chopra, Sidharth,Yaddanapudi, Venkata Madhavi

, (2020/11/24)

A new series of 3-phenyl-4,5-dihydroisoxazole-5-carboxamides were designed, synthesized, and evaluated for their potency against Mtb H37Rv. Designed molecules were synthesized by one-pot cycloaddition reaction in good to excellent yields. Anti-Tubercular evaluation of all synthesized derivatives identified 6k to be highly potent (MIC 1 μg/mL) against Mtb and drug-resistant strains. All potent derivatives were found to be non-toxic when tested against Vero cells. Also, in silico studies were employed to explore the binding patterns of designed compounds to target Mycobacterial membrane protein Large-3. All derivatives exhibited excellent binding patterns with the receptor. The excellent in silico Absorption, Distribution, Metabolism, and Excretion properties and druggability parameters positions these molecules as promising lead candidates for the future development of new drugs to treat drug-resistant Tuberculosis.

Isoxazoline-pyrazole amide compound as well as preparation method and application thereof

-

Paragraph 0108-0112, (2021/05/15)

The invention discloses an isoxazoline-pyrazole amide compound, which has the following structural formula (I) as shown in the specification. Each substituent group is shown in the specification. The invention also provides a preparation method and application of the compound. The compound provided by the invention is suitable for killing insects.

Dibenzazepine-linked isoxazoles: New and potent class of α-glucosidase inhibitors

Umm-E-Farwa,Ullah, Saeed,Khan, Maria Aqeel,Zafar, Humaira,Atia-tul-Wahab,Younus, Munisaa,Choudhary, M. Iqbal,Basha, Fatima Z.

supporting information, (2021/05/10)

α-Glucosidase inhibition is a valid approach for controlling hyperglycemia in diabetes. In the current study, new molecules as a hybrid of isoxazole and dibenzazepine scaffolds were designed, based on their literature as antidiabetic agents. For this, a series of dibenzazepine-linked isoxazoles (33–54) was prepared using Nitrile oxide-Alkyne cycloaddition (NOAC) reaction, and evaluated for their α-glucosidase inhibitory activities to explore new hits for treatment of diabetes. Most of the compounds showed potent inhibitory potency against α-glucosidase (EC 3.2.1.20) enzyme (IC50 = 35.62 ± 1.48 to 333.30 ± 1.67 μM) using acarbose as a reference drug (IC50 = 875.75 ± 2.08 μM). Structure-activity relationship, kinetics and molecular docking studies of active isoxazoles were also determined to study enzyme-inhibitor interactions. Compounds 33, 40, 41, 46, 48–50, and 54 showed binding interactions with critical amino acid residues of α-glucosidase enzyme, such as Lys156, Ser157, Asp242, and Gln353.

Synthesis and SAR study of simple aryl oximes and nitrofuranyl derivatives with potent activity against Mycobacterium tuberculosis

Calixto, Stephane Lima,Carvalho, Guilherme da Silva Louren?o,Coimbra, Elaine Soares,Granato, Juliana da Trindade,Louren?o, Maria Cristina da Silva,Wardell, James,da Costa, Cristiane Fran?a,de Souza, Marcus Vinicius Nora

, p. 12 - 20 (2020/02/06)

Background: Oximes and nitrofuranyl derivatives are particularly important compounds in medicinal chemistry. Thus, many researchers have been reported to possess antibacterial, antiparasitic, insecticidal and fungicidal activities. Methods: In this work, we report the synthesis and the biological activity against Mycobacterium tuberculosis H37RV of a series of fifty aryl oximes, ArCH=N-OH, I, and eight nitrofuranyl compounds, 2-nitrofuranyl-X, II. Results: Among the oximes, I: Ar = 2-OH-4-OH, 42, and I: Ar = 5-nitrofuranyl, 46, possessed the best activity at 3.74 and 32.0 μM, respectively. Also, 46, the nitrofuran compounds, II; X = MeO, 55, and II: X = NHCH2Ph, 58, (14.6 and 12.6 μM, respectively), exhibited excellent biological activities and were non-cytotoxic. Conclusion: The compound 55 showed a selectivity index of 9.85. Further antibacterial tests were performed with compound 55 which was inactive against Enterococcus faecalis, Klebisiella pneumonae, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhymurium and Shigel-la flexneri. This study adds important information to the rational design of new lead anti-TB drugs. Structure-activity Relationship (SAR) is reported.

Potassium Poly(Heptazine Imide): Transition Metal-Free Solid-State Triplet Sensitizer in Cascade Energy Transfer and [3+2]-cycloadditions

Antonietti, Markus,Guldi, Dirk M.,Hussain, Tanveer,Karton, Amir,Markushyna, Yevheniia,Mazzanti, Stefano,Oschatz, Martin,Sánchez Vadillo, José Manuel,Savateev, Aleksandr,Strauss, Volker,Tarakina, Nadezda V.,Tyutyunnik, Alexander P.,Walczak, Ralf,ten Brummelhuis, Katharina

supporting information, p. 15061 - 15068 (2020/06/17)

Polymeric carbon nitride materials have been used in numerous light-to-energy conversion applications ranging from photocatalysis to optoelectronics. For a new application and modelling, we first refined the crystal structure of potassium poly(heptazine imide) (K-PHI)—a benchmark carbon nitride material in photocatalysis—by means of X-ray powder diffraction and transmission electron microscopy. Using the crystal structure of K-PHI, periodic DFT calculations were performed to calculate the density-of-states (DOS) and localize intra band states (IBS). IBS were found to be responsible for the enhanced K-PHI absorption in the near IR region, to serve as electron traps, and to be useful in energy transfer reactions. Once excited with visible light, carbon nitrides, in addition to the direct recombination, can also undergo singlet–triplet intersystem crossing. We utilized the K-PHI centered triplet excited states to trigger a cascade of energy transfer reactions and, in turn, to sensitize, for example, singlet oxygen (1O2) as a starting point to synthesis up to 25 different N-rich heterocycles.

Triazole alcohol derivative as well as preparation method and application thereof

-

Paragraph 0147-0148, (2020/03/11)

The invention relates to a triazole alcohol derivative as well as a preparation method and application thereof. The chemical structure of the triazole alcohol derivative is shown as a formula I, R1 represents a benzene ring or a substituted benzene ring, and substituent groups of the substituted benzene ring can be located at all positions of the benzene ring, can be mono-substituted or multi-substituted, and can be selected from a) halogen which is F and Cl; b) an electron withdrawing group which is cyano or trifluoromethyl; c ) a lower alkyl of 1-4 carbon atoms or a halogen substituted loweralkyl; and d) lower alkoxy of 1-4 carbon atoms or halogen substituted lower alkoxy. The compound of the invention has strong antifungal activity, has the advantages of low toxicity, wide antibacterial spectrum and the like, and can be used for preparing antifungal drugs.

Design, synthesis, and in vitro evaluation of novel triazole analogues featuring isoxazole moieties as antifungal agents

Chai, Xiaoyun,Ding, Zichao,Hao, Yumeng,Jiang, Yuanying,Jin, Yongsheng,Ni, Tingjunhong,Wang, Ruilian,Wang, Ruina,Wang, Ting,Xie, Fei,Yu, Shichong,Zhang, Dazhi

supporting information, (2020/06/17)

In order to develop novel antifungal agents, based on our previous work, a series of (2R,3R)-3-((3-substitutied-isoxazol-5-yl)methoxy)-2-(2,4-difluorophenyl)-1-(1H-1,2,4-triazol-1-yl) butan-2-ol (a1-a26) were designed and synthesized. All of the compounds exhibited good in vitro antifungal activities against eight human pathogenic fungi. Among them, compound a6 showed excellent inhibitory activity against Candida albicans and Candida parasilosis with MIC80 values of 0.0313 μg/mL. In addition, compounds a6, a9, a12, a13 and a14 exhibited moderate inhibitory activities against fluconazole-resistant isolates with MIC80 values ranging from 8 μg/mL to 16 μg/mL. Furthermore, compounds a6, a12 and a23 exhibited low inhibition profiles for CYP3A4. Clear SARs were analyzed, and the molecular docking experiment was carried out to further investigate the relationship between a6 and the target enzyme CYP51.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 154238-36-5