16091-23-9Relevant articles and documents
Structural elucidation of a methylenation reagent of esters: Synthesis and reactivity of a dinuclear titanium(iii) methylene complex
Kurogi, Takashi,Kuroki, Kaito,Moritani, Shunsuke,Takai, Kazuhiko
, p. 3509 - 3515 (2021)
Transmetallation of a zinc methylene complex [ZnI(tmeda)]2(μ-CH2) with a titanium(iii) chloride [TiCl3(tmeda)(thf)] produced a titanium methylene complex. The X-ray diffraction study displayed a dinuclear methylene structure [TiCl(tmeda)]2(μ-CH2)(μ-Cl)2. Treatment of an ester with the titanium methylene complex resulted in methylenation of the ester carbonyl to form a vinyl ether. The titanium methylene complex also reacted with a terminal olefin, resulting in olefin-metathesis and olefin-homologation. Cyclopropanation by methylene transfer from the titanium methylene proceeded by use of a 1,3-diene. The mechanistic study of the cyclopropanation reaction by the density functional theory calculations was also reported.
METHODS OF BORYLATION AND USES THEREOF
-
Page/Page column 61-62, (2021/04/30)
The present invention relates, in general terms, to methods of borylation and uses thereof. In particular, the present invention provides a method of borylating an alkene compound by contacting the compound with a boron compound, a Fe pre-catalyst and a protic additive. The borylation occurs at a vicinal (β) position to an electron donating or electron withdrawing moiety of the compound.
Mild olefin formationviabio-inspired vitamin B12photocatalysis
Bam, Radha,Pollatos, Alexandros S.,Moser, Austin J.,West, Julian G.
, p. 1736 - 1744 (2021/02/22)
Dehydrohalogenation, or elimination of hydrogen-halide equivalents, remains one of the simplest methods for the installation of the biologically-important olefin functionality. However, this transformation often requires harsh, strongly-basic conditions, rare noble metals, or both, limiting its applicability in the synthesis of complex molecules. Nature has pursued a complementary approach in the novel vitamin B12-dependent photoreceptor CarH, where photolysis of a cobalt-carbon bond leads to selective olefin formation under mild, physiologically-relevant conditions. Herein we report a light-driven B12-based catalytic system that leverages this reactivity to convert alkyl electrophiles to olefins under incredibly mild conditions using only earth abundant elements. Further, this process exhibits a high level of regioselectivity, producing terminal olefins in moderate to excellent yield and exceptional selectivity. Finally, we are able to access a hitherto-unknown transformation, remote elimination, using two cobalt catalysts in tandem to produce subterminal olefins with excellent regioselectivity. Together, we show vitamin B12to be a powerful platform for developing mild olefin-forming reactions.
A Pd-Catalyzed Site-Controlled Isomerization of Terminal Olefins
Ren, Wenlong,Sun, Fei,Chu, Jianxiao,Shi, Yian
supporting information, p. 1868 - 1873 (2020/03/03)
An effective Pd-catalyzed isomerization of olefins with 2-PyPPh2 as the ligand is described. A wide variety of trans-2-olefins bearing various functional groups can be obtained with high regio- A nd stereoselectivity under mild reaction conditions. The ligand is crucial for the reaction.
Iron-Catalyzed Tunable and Site-Selective Olefin Transposition
Yu, Xiaolong,Zhao, Haonan,Li, Ping,Koh, Ming Joo
supporting information, p. 18223 - 18230 (2020/12/04)
The catalytic isomerization of C-C double bonds is an indispensable chemical transformation used to deliver higher-value analogues and has important utility in the chemical industry. Notwithstanding the advances reported in this field, there is compelling demand for a general catalytic solution that enables precise control of the C═C bond migration position, in both cyclic and acyclic systems, to furnish disubstituted and trisubstituted alkenes. Here, we show that catalytic amounts of an appropriate earth-abundant iron-based complex, a base and a boryl compound, promote efficient and controllable alkene transposition. Mechanistic investigations reveal that these processes likely involve in situ formation of an iron-hydride species which promotes olefin isomerization through sequential olefin insertion/β-hydride elimination. Through this strategy, regiodivergent access to different products from one substrate can be facilitated, isomeric olefin mixtures commonly found in petroleum-derived feedstock can be transformed to a single alkene product, and unsaturated moieties embedded within linear and heterocyclic biologically active entities can be obtained.
Catalytic protodeboronation of pinacol boronic esters: Formal anti-Markovnikov hydromethylation of alkenes
Clausen, Florian,Kischkewitz, Marvin,Bergander, Klaus,Studer, Armido
, p. 6210 - 6214 (2019/06/27)
Pinacol boronic esters are highly valuable building blocks in organic synthesis. In contrast to the many protocols available on the functionalizing deboronation of alkyl boronic esters, protodeboronation is not well developed. Herein we report catalytic protodeboronation of 1°, 2° and 3° alkyl boronic esters utilizing a radical approach. Paired with a Matteson-CH2-homologation, our protocol allows for formal anti-Markovnikov alkene hydromethylation, a valuable but unknown transformation. The hydromethylation sequence was applied to methoxy protected (-)-Δ8-THC and cholesterol. The protodeboronation was further used in the formal total synthesis of δ-(R)-coniceine and indolizidine 209B.
Controllable Isomerization of Alkenes by Dual Visible-Light-Cobalt Catalysis
Meng, Qing-Yuan,Schirmer, Tobias E.,Katou, Kousuke,K?nig, Burkhard
, p. 5723 - 5728 (2019/04/03)
We report herein that thermodynamic and kinetic isomerization of alkenes can be accomplished by the combination of visible light with Co catalysis. Utilizing Xantphos as the ligand, the most stable isomers are obtained, while isomerizing terminal alkenes over one position can be selectively controlled by using DPEphos as the ligand. The presence of the donor–acceptor dye 4CzIPN accelerates the reaction further. Transformation of exocyclic alkenes into the corresponding endocyclic products could be efficiently realized by using 4CzIPN and Co(acac)2 in the absence of any additional ligands. Spectroscopic and spectroelectrochemical investigations indicate CoI being involved in the generation of a Co hydride, which subsequently adds to alkenes initiating the isomerization.
Umpolung of Carbonyl Groups as Alkyl Organometallic Reagent Surrogates for Palladium-Catalyzed Allylic Alkylation
Zhu, Dianhu,Lv, Leiyang,Li, Chen-Chen,Ung, Sosthene,Gao, Jian,Li, Chao-Jun
supporting information, p. 16520 - 16524 (2018/11/23)
Palladium-catalyzed allylic alkylation of nonstabilized carbon nucleophiles is difficult and remains a major challenge. Reported here is a highly chemo- and regioselective direct palladium-catalyzed C-allylation of hydrazones, generated from carbonyls, as a source of umpolung unstabilized alkyl carbanions and surrogates of alkyl organometallic reagents. Contrary to classical allylation techniques, this umpolung reaction utilizes hydrazones prepared not only from aryl aldehydes but also from alkyl aldehydes and ketones as renewable feedstocks. This strategy complements the palladium-catalyzed coupling of unstabilized nucleophiles with allylic electrophiles by providing an efficient and selective catalytic alternative to the traditional use of highly reactive alkyl organometallic reagents.
Cobalt-Catalyzed Regioselective Olefin Isomerization under Kinetic Control
Liu, Xufang,Zhang, Wei,Wang, Yujie,Zhang, Ze-Xin,Jiao, Lei,Liu, Qiang
supporting information, p. 6873 - 6882 (2018/05/30)
Olefin isomerization is a significant transformation in organic synthesis, which provides a convenient synthetic route for internal olefins and remote functionalization processes. The selectivity of an olefin isomerization process is often thermodynamically controlled. Thus, to achieve selectivity under kinetic control is very challenging. Herein, we report a novel cobalt-catalyzed regioselective olefin isomerization reaction. By taking the advantage of fine-tunable NNP-pincer ligand structures, this catalytic system features high kinetic control of regioselectivity. This mild catalytic system enables the isomerization of 1,1-disubstituted olefins bearing a wide range of functional groups in excellent yields and regioselectivity. The synthetic utility of this transformation was highlighted by the highly selective preparation of a key intermediate for the total synthesis of minfiensine. Moreover, a new strategy was developed to realize the selective monoisomerization of 1-alkenes to 2-alkenes dictated by installing substituents on the γ-position of the double bonds. Mechanistic studies supported that the in situ generated Co-H species underwent migratory insertion of double bond/β-H elimination sequence to afford the isomerization product. The less hindered olefin products were always preferred in this cobalt-catalyzed olefin isomerization due to an effective ligand control of the regioselectivity for the β-H elimination step.
An Agostic Iridium Pincer Complex as a Highly Efficient and Selective Catalyst for Monoisomerization of 1-Alkenes to trans-2-Alkenes
Wang, Yulei,Qin, Chuan,Jia, Xiangqing,Leng, Xuebing,Huang, Zheng
supporting information, p. 1614 - 1618 (2017/02/05)
A unique Ir complex (tBuNCCP)Ir with the pyridine–phosphine pincer as the sole ligand, featuring a dual agostic interaction between the Ir and two σ C?H bonds from a tBu substituent, has been prepared. This complex exhibits exceptionally high activity and excellent regio- and stereoselectivity for monoisomerization of 1-alkenes to trans-2-alkenes with wide functional-group tolerance. Reactions can be performed in neat reactant on a more than 100 gram scale using 0.005 mol % catalyst loadings with turnover numbers up to 19000.