18394-00-8Relevant articles and documents
A General Approach to Intermolecular Olefin Hydroacylation through Light-Induced HAT Initiation: An Efficient Synthesis of Long-Chain Aliphatic Ketones and Functionalized Fatty Acids
Guin, Joyram,Paul, Subhasis
supporting information, p. 4412 - 4419 (2021/02/05)
Herein, an operationally simple, environmentally benign and effective method for intermolecular radical hydroacylation of unactivated substrates by employing photo-induced hydrogen atom transfer (HAT) initiation is described. The use of commercially available and inexpensive photoinitiators (Ph2CO and NHPI) makes the process attractive. The olefin hydroacylation protocol applies to a wide array of substrates bearing numerous functional groups and many complex structural units. The reaction proves to be scalable (up to 5 g). Different functionalized fatty acids, petrochemicals and naturally occurring alkanes can be synthesized with this protocol. A radical chain mechanism is implicated in the process.
The study of oxazolidone formation from 9,10-epoxyoctadecane and phenylisocyanate
Javni, Ivan,Guo, Andrew,Petrovic, Zoran S.
, p. 595 - 600 (2007/10/03)
The formation of oxazolidone from 9,10-epoxyoctadecane and phenylisocyanate was studied. One branch of epoxidized vegetable oil with one epoxy group per chain corresponds to 9,10-epoxyoctadecane. This model could explain the probability of oxazolidone formation from natural oil-derived epoxides. Epoxidized natural oils are TG consisting of glycerin and three FA with or without one to three epoxy groups in the middle of the chain. To study oxazolidone formation from an internal epoxy group without possible interference from the side reactions on the ester group, 9,10-epoxyoctadecane was selected as the most appropriate model compound. Epoxy groups in the middle of a long aliphatic chain are of low reactivity toward isocyanates, and preparation of oxazolidones requires fairly harsh conditions such as high temperatures and catalysts, which also promote side reactions. The dominant side reaction is rearrangement of the epoxy groups. We found that the direction and magnitude of the rearrangement and the yield of any particular product depended on the catalyst used. Lithium chloride, aluminum trichloride, and zinc iodide catalyzed oxazolidone formation, along with the catalysis of side reactions such as ketone and carbonate formation. Aluminum trichloride showed the highest conversion of 9,10-epoxyoctadecane to oxazolidone. Aluminum triisopropoxide, triphenylantimony iodide, and imidazole did not catalyze the formation of oxazolidone. They were effective as catalysts of epoxy group rearrangement and promoted the formation of hydroxyl, ketone, and carbonate compounds. Hydroxyl groups reacted with isocyanate to produce urethane.
Reductive couplings of acid chlorides mediated by SmI2
Collin,Dallemer,Namy,Kagan
, p. 7407 - 7410 (2007/10/02)
Reductive couplings of acid chlorides and of acid chlorides with aldehydes or ketones in presence of an excess of SmI2 produce ketones in moderate to good yields.
MILD REDUCTION OF α-HALO KETONES TO KETONES PROMOTED BY PI3 OR P2I4
Denis, J. N.,Krief, A.
, p. 1431 - 1432 (2007/10/02)
PI3 and P2I4 cleanly reduce α-bromo and α-iodo ketones to ketones
Ketone synthesis by hydroacylation
-
, (2008/06/13)
The invention is a generalized hydroacylation reaction. The reaction involves the activation of a selected aldehyde by converting by iminization to an aldimine or an aminal. The imine group replaces the carbonyl group. The imine C-H bond is then susceptible to attack by a chosen olefin, and hydrolysis to yield the ketone. One moiety of the ketone derives from the aldehyde and the other from the olefin added later. Therefore, the ketone may be symmetrical or unsymmetrical. Both aromatic and aliphatic aldehydes may be activated according to this process.