Welcome to LookChem.com Sign In|Join Free

CAS

  • or
3,5-Dimethylbenzonitrile, also known as 1,3-dimethyl-5-phenylbenzene, is a chemical compound characterized by the molecular formula C9H9N. It is a colorless liquid with a faint aromatic odor and is soluble in organic solvents. 3,5-Dimethylbenzonitrile is recognized for its role as a versatile precursor in the synthesis of a variety of products across different industries.

22445-42-7 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 22445-42-7 Structure
  • Basic information

    1. Product Name: 3,5-Dimethylbenzonitrile
    2. Synonyms: 3,5-DIMETHYLBENZONITRILE;Benzonitrile, 3,5-dimethyl-;3,5-DIMETHYLBENZONITRILE 98%;3,5-dimethylbenzenecarbonitrile;3,5-dimethylphenyl carbonitrile;1,3-Dimethyl-5-cyanobenzene
    3. CAS NO:22445-42-7
    4. Molecular Formula: C9H9N
    5. Molecular Weight: 131.17
    6. EINECS: 245-001-9
    7. Product Categories: N/A
    8. Mol File: 22445-42-7.mol
  • Chemical Properties

    1. Melting Point: 42-43°C
    2. Boiling Point: 243.1 °C at 760 mmHg
    3. Flash Point: 100.8 °C
    4. Appearance: /
    5. Density: 0.99 g/cm3
    6. Vapor Pressure: 0.0327mmHg at 25°C
    7. Refractive Index: 1.525
    8. Storage Temp.: Sealed in dry,Room Temperature
    9. Solubility: N/A
    10. CAS DataBase Reference: 3,5-Dimethylbenzonitrile(CAS DataBase Reference)
    11. NIST Chemistry Reference: 3,5-Dimethylbenzonitrile(22445-42-7)
    12. EPA Substance Registry System: 3,5-Dimethylbenzonitrile(22445-42-7)
  • Safety Data

    1. Hazard Codes: Xi
    2. Statements: 20/21/22
    3. Safety Statements: 26-36/37/39
    4. RIDADR: 3276
    5. WGK Germany:
    6. RTECS:
    7. HazardClass: IRRITANT-HARMFUL
    8. PackingGroup: N/A
    9. Hazardous Substances Data: 22445-42-7(Hazardous Substances Data)

22445-42-7 Usage

Uses

Used in Pharmaceutical Industry:
3,5-Dimethylbenzonitrile is used as a precursor for the synthesis of various pharmaceuticals, contributing to the development of new medications and therapeutic agents.
Used in Agrochemical Industry:
In the agrochemical sector, 3,5-Dimethylbenzonitrile is utilized as a starting material for the production of agrochemicals, which are essential for enhancing crop protection and yield.
Used in Specialty Chemicals Production:
3,5-Dimethylbenzonitrile serves as a building block in the synthesis of specialty chemicals, which are used in a wide range of applications due to their unique properties.
Used in Dyes and Pigments Industry:
3,5-Dimethylbenzonitrile is used as an intermediate in the production of dyes and pigments, which are crucial for coloring various materials in industries such as textiles, plastics, and printing inks.
Used in Plastics Industry:
3,5-Dimethylbenzonitrile is employed in the manufacturing process of plastics, where it helps in creating specific properties required for different applications.
Used in Perfume and Flavoring Industry:
As a component in the synthesis of organic compounds, 3,5-Dimethylbenzonitrile is used in the perfume and flavoring industry to create distinctive scents and tastes.
It is important to handle 3,5-dimethylbenzonitrile with care due to its potential health hazards and environmental risks, as it is considered harmful if swallowed, inhaled, or in contact with skin. Proper safety measures should be taken during its use to mitigate any risks associated with this chemical compound.

Check Digit Verification of cas no

The CAS Registry Mumber 22445-42-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,2,4,4 and 5 respectively; the second part has 2 digits, 4 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 22445-42:
(7*2)+(6*2)+(5*4)+(4*4)+(3*5)+(2*4)+(1*2)=87
87 % 10 = 7
So 22445-42-7 is a valid CAS Registry Number.
InChI:InChI=1/C9H9N/c1-7-3-8(2)5-9(4-7)6-10/h3-5H,1-2H3

22445-42-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 3,5-Dimethylbenzonitrile

1.2 Other means of identification

Product number -
Other names 3,3-dimethylbenzonitrile

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:22445-42-7 SDS

22445-42-7Relevant articles and documents

Method for converting aromatic aldehyde into aromatic nitrile by using sulfur powder promoted inorganic ammonium as nitrogen source (by machine translation)

-

Paragraph 0034; 0035, (2020/09/12)

The invention discloses a method for converting aromatic aldehyde into aromatic nitrile. The method is conversion of high yield of aromatic aldehyde one-pot reaction of sulfur powder promoted inorganic ammonium as a nitrogen source into aromatic nitrile. The method has the advantages of no need of metal participation, no need of strong oxide, compatibility of reaction to air, easiness in amplification to a gram scale and the like, and overcomes the problems of harsh reaction conditions, complex operation, low functional group compatibility and the like in the prior art. (by machine translation)

Zn-catalyzed cyanation of aryl iodides

Zhao, Lulu,Dong, Yanan,Xia, Qiangqiang,Bai, Jianfei,Li, Yuehui

, p. 6471 - 6477 (2020/06/08)

We report the first example of zinc-catalyzed cyanation of aryl iodides with formamide as the cyanogen source. The transformation was promoted by the bisphosphine Nixantphos ligand. Under optimized conditions, a variety of electron-donating and electron-withdrawing aryl iodides were converted into nitrile products in good to excellent yields. This approach is an exceedingly simple and benign method for the synthesis of aryl nitriles and is likely to proceed via a dinuclear Zn-concerted catalysis.

Dual Ligand-Enabled Nondirected C-H Cyanation of Arenes

Chen, Hao,Mondal, Arup,Wedi, Philipp,Van Gemmeren, Manuel

, p. 1979 - 1984 (2019/02/19)

Aromatic nitriles are key structural units in organic chemistry and, therefore, highly attractive targets for C-H activation. Herein, the development of an arene-limited, nondirected C-H cyanation based on the use of two cooperatively acting commercially available ligands is reported. The reaction enables the cyanation of arenes by C-H activation in the absence of directing groups and is therefore complementary to established approaches.

Ligand-Promoted Non-Directed C?H Cyanation of Arenes

Liu, Luo-Yan,Yeung, Kap-Sun,Yu, Jin-Quan

supporting information, p. 2199 - 2202 (2019/01/24)

This article reports the first example of a 2-pyridone accelerated non-directed C?H cyanation with an arene as the limiting reagent. This protocol is compatible with a broad scope of arenes, including advanced intermediates, drug molecules, and natural products. A kinetic isotope experiment (kH/kD=4.40) indicates that the C?H bond cleavage is the rate-limiting step. Also, the reaction is readily scalable, further showcasing the synthetic utility of this method.

Transformation of aromatic bromides into aromatic nitriles with n-BuLi, pivalonitrile, and iodine under metal cyanide-free conditions

Uchida, Ko,Togo, Hideo

, (2019/09/04)

Various aromatic nitriles could be obtained in good yields by the treatment of aryl bromides with n-butyllithium and then pivalonitrile, followed by the treatment with molecular iodine at 70 °C, without metal cyanides under transition-metal-free conditions. The present reaction proceeds through the radical β-elimination of imino-nitrogen-centered radicals formed from the reactions of imines and N-iodoimines under warming conditions.

Nickel-catalyzed cyanation of aryl halides and triflates using acetonitrile: Via C-CN bond cleavage assisted by 1,4-bis(trimethylsilyl)-2,3,5,6-tetramethyl-1,4-dihydropyrazine

Ueda, Yohei,Tsujimoto, Nagataka,Yurino, Taiga,Tsurugi, Hayato,Mashima, Kazushi

, p. 994 - 999 (2019/02/03)

We developed a non-toxic cyanation reaction of various aryl halides and triflates in acetonitrile using a catalyst system of [Ni(MeCN)6](BF4)2, 1,10-phenanthroline, and 1,4-bis(trimethylsilyl)-2,3,5,6-tetramethyl-1,4-dihydropyrazine (Si-Me4-DHP). Si-Me4-DHP was found to function as a reductant for generating nickel(0) species and a silylation reagent to achieve the catalytic cyanation via C-CN bond cleavage.

Development and Utilization of a Palladium-Catalyzed Dehydration of Primary Amides to Form Nitriles

Al-Huniti, Mohammed H.,Rivera-Chávez, José,Colón, Katsuya L.,Stanley, Jarrod L.,Burdette, Joanna E.,Pearce, Cedric J.,Oberlies, Nicholas H.,Croatt, Mitchell P.

, p. 6046 - 6050 (2018/09/27)

A palladium(II) catalyst, in the presence of Selectfluor, enables the efficient and chemoselective transformation of primary amides into nitriles. The amides can be attached to aromatic rings, heteroaromatic rings, or aliphatic side chains, and the reactions tolerate steric bulk and electronic modification. Dehydration of a peptaibol containing three glutamine groups afforded structure-activity relationships for each glutamine residue. Thus, this dehydration can act similarly to an alanine scan for glutamines via synthetic mutation.

Stable palladium nanoparticles catalyzed synthesis of benzonitriles using K4[Fe(CN)6]

Ganapathy, Dhandapani,Kotha, Surya Srinivas,Sekar, Govindasamy

supporting information, p. 175 - 178 (2015/02/02)

A stable palladium nanocatalyst is used in the synthesis of benzonitriles by cyanation of aryl iodides. A nontoxic and economic potassium hexacyanoferrate was used as a safe cyanide source. A variety of benzonitriles are efficiently synthesized using the stable nanocatalyst. The catalyst was quantitatively recovered and reused without any apparent loss in the catalytic activity.

Cobalt-Catalyzed Electrophilic Cyanation of Arylzinc Halides with N-Cyano-N-phenyl-p-methylbenzenesulfonamide (NCTS)

Cai, Yingxiao,Qian, Xin,Rrat, Alice,Auffrant, Audrey,Gosmini, Corinne

supporting information, p. 3419 - 3423 (2016/01/25)

The cobalt-catalyzed cross-coupling of organozinc bromides with N-cyano-N-phenyl-p-methylbenzenesulfonamide (NCTS) is described. The same cobalt catalyst, cobalt(II) bromide, was used for both the synthesis of the organozinc species and the cross-coupling reaction. However in this case, a catalytic amount of zinc dust is necessary in the second step to release the low-valent cobalt. Under these mild conditions, moderate to excellent yields of different benzonitriles were obtained.

Iodine-catalyzed ammoxidation of methyl arenes

Guo, Songjin,Wan, Gen,Sun, Song,Jiang, Yan,Yu, Jin-Tao,Cheng, Jiang

supporting information, p. 5085 - 5088 (2015/03/30)

The development of organic transformation using cheap and readily available substrates under mild conditions will be pivotal for green and sustainable synthetic organic chemistry. Concerning our continued interest in the cyanation reaction, a metal-free direct ammoxidation of readily available methyl arenes leading to nitriles was established under mild conditions. A series of aryl methanes especially heteroaryl methanes (30 examples) were applicable in moderate to good yields with good functionality tolerance.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 22445-42-7