24991-47-7Relevant articles and documents
Photoredox Catalyzed Sulfonylation of Multisubstituted Allenes with Ru(bpy)3Cl2 or Rhodamine B
Chen, Jingyun,Chen, Shufang,Jiang, Jun,Lu, Qianqian,Shi, Liyang,Xu, Zekun,Yimei, Zhao
supporting information, (2021/11/09)
A highly regio- and stereoselective sulfonylation of allenes was developed that provided direct access to α, β-substituted unsaturated sulfone. By means of visible-light photoredox catalysis, the free radicals produced by p-toluenesulfonic acid reacted with multisubstituted allenes to obtain Markovnikov-type vinyl sulfones with Ru(bpy)3Cl2 or Rhodamine B as photocatalyst. The yield of this reaction could reach up to 91%. A series of unsaturated sulfones would be used for further transformation to some valuable compounds.
Polymerization of Allenes by Using an Iron(II) β-Diketiminate Pre-Catalyst to Generate High Mn Polymers
Durand, Derek J.,Webster, Ruth L.,Woof, Callum R.
supporting information, p. 12335 - 12340 (2021/07/19)
Herein, we report an iron(II)-catalyzed polymerization of arylallenes. This reaction proceeds rapidly at room temperature in the presence of a hydride co-catalyst to generate polymers of weight up to Mn=189 000 Da. We have determined the polymer structure and chain length for a range of monomers through a combination of NMR, differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) analysis. Mechanistically, we postulate that the co-catalyst does not react to form an iron(II) hydride in situ, but instead the chain growth is proceeding via a reactive Fe(III) species. We have also performed kinetic and isotopic experiments to further our understanding. The formation of a highly unusual 1,3-substituted cyclobutane side-product is also investigated.
Switchable Chemoselectivity of Reactive Intermediates Formation and Their Direct Use in A Flow Microreactor
Ashikari, Yosuke,Tamaki, Takashi,Kawaguchi, Tomoko,Furusawa, Mai,Yonekura, Yuya,Ishikawa, Susumu,Takahashi, Yusuke,Aizawa, Yoko,Nagaki, Aiichiro
supporting information, p. 16107 - 16111 (2021/10/12)
A chemoselectivity switchable microflow reaction was developed to generate reactive and unstable intermediates. The switchable chemoselectivity of this reaction enables a selection for one of two different intermediates, an aryllithium or a benzyl lithium, at will from the same starting material. Starting from bromo-substituted styrenes, the aryllithium intermediates were converted to the substituted styrenes, whereas the benzyl lithium intermediates were engaged in an anionic polymerization. These chemoselectivity-switchable reactions can be integrated to produce polymers that cannot be formed during typical polymerization reactions.
Vinyl Thianthrenium Tetrafluoroborate: A Practical and Versatile Vinylating Reagent Made from Ethylene
Juliá, Fabio,Paulus, Fritz,Ritter, Tobias,Yan, Jiyao
supporting information, p. 12992 - 12998 (2021/09/03)
The use of vinyl electrophiles in synthesis has been hampered by the lack of access to a suitable reagent that is practical and of appropriate reactivity. In this work we introduce a vinyl thianthrenium salt as an effective vinylating reagent. The bench-stable, crystalline reagent can be readily prepared from ethylene gas at atmospheric pressure in one step and is broadly useful in the annulation chemistry of (hetero)cycles, N-vinylation of heterocyclic compounds, and palladium-catalyzed cross-coupling reactions. The structural features of the thianthrene core enable a distinct synthesis and reactivity profile, unprecedented for other vinyl sulfonium derivatives.
KO-t-Bu Catalyzed Thiolation of β-(Hetero)arylethyl Ethers via MeOH Elimination/hydrothiolation
Shigeno, Masanori,Shishido, Yoshiteru,Hayashi, Kazutoshi,Nozawa-Kumada, Kanako,Kondo, Yoshinori
supporting information, p. 3932 - 3935 (2021/08/24)
Herein, we describe a KO-t-Bu catalyzed thiolation of β-(hetero)arylethyl ethers through MeOH elimination to form (hetero)arylalkenes followed by anti-Markovnikov hydrothiolation to afford linear thioethers. The system works well with a variety of β-(hetero)arylethyl ethers, including electron-deficient, electron-neutral, electron-rich, and branched substrates and a range of aliphatic and aromatic thiols.
Mild and efficient desulfurization of thiiranes with MoCl5/Zn system
Lee, Yeong Jin,Shin, Jeong Won,Yoo, Byung Woo
, (2021/11/10)
Desulfurization of a variety of thiiranes to alkenes occurs chemoselectively in high yields upon treatment with MoCl5/Zn system under mild conditions. The new methodology demonstrates high functional group tolerance toward chloro, bromo, fluoro, methoxy, ester, ether and keto groups.
Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Vinyl Acetate in Dimethyl Isosorbide as a Sustainable Solvent
Huang, Xia,Jin, Jian,Lei, Chuanhu,Su, Mincong
supporting information, (2022/01/15)
A nickel-catalyzed reductive cross-coupling has been achieved using (hetero)aryl bromides and vinyl acetate as the coupling partners. This mild, applicable method provides a reliable access to a variety of vinyl arenes, heteroarenes, and benzoheterocycles, which should expand the chemical space of precursors to fine chemicals and polymers. Importantly, a sustainable solvent, dimethyl isosorbide, is used, making this protocol more attractive from the point of view of green chemistry.
Water-hydrogen-supplying iridium catalytic alkyne semi-reduction selective synthesis method Process for trans-olefines
-
Paragraph 0127-0130, (2021/09/29)
The method comprises the following steps: DPPE, COD, a catalyst, water and alkyne are subjected to reduction reaction of alkyne in an organic solvent, and cis-olefin is generated by reaction under nitrogen protection. The ligand DPPE, the catalyst, the water and the alkyne are subjected to a reduction reaction of alkyne in an organic solvent, and a trans-olefin is generated by the reaction under nitrogen protection. The reactor for the reduction reaction is a sealed pressure-resistant reactor, the temperature of the reduction reaction is 100 - 130 °C, and the reduction reaction time is 20 - 48h. The amount of the catalyst used is 5 - 20% of the molar amount of alkyne, and the amount of water is 10 - 50 times of the molar amount of alkyne. The ligand is used in an amount 0.2 - 5 times the molar amount of catalyst. The catalyst system disclosed by the invention has extremely high chemical reaction and stereoselectivity, and cis or trans olefinic products can be synthesized at high yield. The catalytic system has strong universality on substrates, and alkynes containing various functional groups can efficiently carry out high-selectivity reduction reaction.
Zinc salt-catalyzed reduction of α-aryl imino esters, diketones and phenylacetylenes with water as hydrogen source
Shen, Guoli,Liu, Haojie,Chen, Jingchao,He, Zhenxiu,Zhou, Yongyun,Wang, Lin,Luo, Yang,Su, Zhimin,Fan, Baomin
supporting information, p. 3601 - 3610 (2021/05/04)
The zinc salt-catalyzed reduction of α-aryl imino esters, diketones and phenylacetylenes with water as hydrogen source and zinc as reductant was successfully conducted. The presented method provides a low-cost, environmentally friendly and practical preparation of α-aryl amino esters, α-hydroxyketones and phenylethylenes. By using D2O as deuterium source, the corresponding products were obtained in high efficiency with excellent deuterium incorporation rate, which gives a cheap and safe tool for access to valuable deuterium-labelled compounds. This journal is
Indene formation upon borane-induced cyclization of arylallenes, 1,1-carboboration, and retro-hydroboration
Hasenbeck, Max,Wech, Felix,Averdunk, Arthur,Becker, Jonathan,Gellrich, Urs
supporting information, p. 5518 - 5521 (2021/06/12)
We herein report the reaction of arylallenes with tris(pentafluorophenyl)borane that yields pentafluorophenyl substituted indenes. The tris(pentafluorophenyl)borane induces the cyclization of the allene and transfers a pentafluorophenyl ring in the course of this reaction. A Hammett plot analysis and DFT computations indicate a 1,1-carboboration to be the C-C bond-forming step.