2571-52-0Relevant articles and documents
Using Data Science To Guide Aryl Bromide Substrate Scope Analysis in a Ni/Photoredox-Catalyzed Cross-Coupling with Acetals as Alcohol-Derived Radical Sources
Doyle, Abigail G.,Gandhi, Shivaani S.,Jiang, Shutian,Kariofillis, Stavros K.,Martinez Alvarado, Jesus I.,?urański, Andrzej M.
supporting information, p. 1045 - 1055 (2022/01/19)
Ni/photoredox catalysis has emerged as a powerful platform for C(sp2)–C(sp3) bond formation. While many of these methods typically employ aryl bromides as the C(sp2) coupling partner, a variety of aliphatic radical sources have been investigated. In principle, these reactions enable access to the same product scaffolds, but it can be hard to discern which method to employ because nonstandardized sets of aryl bromides are used in scope evaluation. Herein, we report a Ni/photoredox-catalyzed (deutero)methylation and alkylation of aryl halides where benzaldehyde di(alkyl) acetals serve as alcohol-derived radical sources. Reaction development, mechanistic studies, and late-stage derivatization of a biologically relevant aryl chloride, fenofibrate, are presented. Then, we describe the integration of data science techniques, including DFT featurization, dimensionality reduction, and hierarchical clustering, to delineate a diverse and succinct collection of aryl bromides that is representative of the chemical space of the substrate class. By superimposing scope examples from published Ni/photoredox methods on this same chemical space, we identify areas of sparse coverage and high versus low average yields, enabling comparisons between prior art and this new method. Additionally, we demonstrate that the systematically selected scope of aryl bromides can be used to quantify population-wide reactivity trends and reveal sources of possible functional group incompatibility with supervised machine learning.
Switchable activity of a Ru catalyst bearing an annulated mesoionic carbene ligand for oxidation of primary amines
Bera, Jitendra K.,Din Reshi, Noor U,Pal, Nilay Kumar,Pal, Saikat,Pal, Sourav,Yadav, Suman
, (2022/01/31)
The catalytic activity of a Ru complex 1, bearing a fused π-conjugated imidazo[1,2–a][1,8]naphthyridine-based mesoionic carbene (MIC) ligand, is examined for the oxidation of primary amines. Complex 1 affords nitrile or imine depending on the nature of th
H3PO4 catalyzed one-pot synthesis of 1,3-diphenyl-1H-pyrazole-4-carbaldehyde to novel 1,3-diphenyl-1H-pyrazole-4-carbonitrile
Choudhare, Tukaram S,Netankar, Prashant D,Shirsath, Sagar E,Wagare, Devendra S
, (2021/07/10)
Abstract: One-pot condensation of pyrazole-4-aldehydes and hydroxylamine hydrochloride to form the corresponding oxime using formic acid as a medium and further dehydration of oxime using a catalytic amount of orthophosphoric acid to afford novel pyrazole-4-carbonitrile. This protocol serves as an ortho-phosphoric acid-catalyzed one-pot conversion of aldehyde to nitrile. Most remarkable features of this method are metal-free, cost-effective, atom efficiency with excellent yield (98–99%). This process will serve as a robust and scalable tool for the synthesis of valuable and versatile precursor (nitriles). This precursor will pave the way for the synthesis of various medicinally important valuable compounds. Graphic abstract: [Figure not available: see fulltext.].
Copper-promoted cyanation of aryl iodides with N,N-dimethyl aminomalononitrile
Liu, Si-Zhan,Li, Jing,Xue, Cao-Gen,Xu, Xue-Tao,Lei, Lin-Sheng,Huo, Chen-Yu,Wang, Zhen,Wang, Shao-Hua
supporting information, (2021/02/01)
A copper-promoted cyanation of aryl iodides has been successfully developed by using N,N-dimethyl aminomalononitrile as the cyanide source with moderate toxicity and better stability. This reaction features broad substrate scope, excellent reaction yields, readily available catalyst, and simple reaction conditions.
Method for catalyzing oxidation of amines to generate nitrile by using nonmetal mesoporous nitrogen-doped carbon material
-
Paragraph 0019; 0025, (2021/05/08)
The invention discloses a method for preparing nitrile by catalyzing amine oxidation with a non-metal mesoporous nitrogen-doped carbon material catalyst, which is applied to the field of synthesis, the material is prepared by using a nitrogen-containing organic ligand as a precursor and silica sol as a template agent, calcining in the atmosphere of inert gases such as N2 or Ar and then removing the template agent; oxygen or air is used as an oxygen source, the reaction is performed at 80-130 DEG C under the action of ammonia water in the presence of a solvent, the effect is good, and the product still keeps higher activity after being recycled for more than 8 times, and has a wide industrial application prospect. The invention provides a heterogeneous non-metal catalytic system for catalyzing amine oxidation to prepare nitrile for the first time, and compared with a reported metal catalyst, the heterogeneous non-metal catalytic system does not bring metal pollution to a product to influence the effect of cyano drugs.
A convenient reagent for the conversion of aldoximes into nitriles and isonitriles
Zhang, Wei,Lin, Jin-Hong,Zhang, Pengfei,Xiao, Ji-Chang
supporting information, p. 6221 - 6224 (2020/06/29)
For the dehydroxylation of aldoximes with 4-nitro-1-((trifluoromethyl)sulfonyl)-imidazole (NTSI), slight modifications of reaction conditions resulted in significantly different reaction paths to provide either nitriles or isonitriles. The challenging conversion of aldoximes into isonitriles was achieved under mild conditions.
Nitrosation of Cyanamide: Preparation and Properties of the Elusive E- and Z-N'-Cyanodiazohydroxides
Guethner, Thomas,Huber, Evi,Sans, Juergen,Thalhammer, Franz
supporting information, (2020/04/29)
Nitrosation of cyanamide leads to unstable E/Z-cyanodiazohydroxides that easily deprotonate to E/Z-cyanodiazotates. Pursuing observations of E. Drechsel 145 years ago, the structure and reactivity of those products was determined, mainly in aqueous solution. Depending on the pH, three different thermal decomposition pathways give either N2O + HCN or N2 + HNCO. They were evaluated experimentally and by quantum mechanical calculations.
Ni-Catalyzed Reductive Cyanation of Aryl Halides and Phenol Derivatives via Transnitrilation
Mills, L. Reginald,Graham, Joshua M.,Patel, Purvish,Rousseaux, Sophie A. L.
supporting information, p. 19257 - 19262 (2019/12/02)
Herein, we report a Ni-catalyzed reductive coupling for the synthesis of benzonitriles from aryl (pseudo)halides and an electrophilic cyanating reagent, 2-methyl-2-phenyl malononitrile (MPMN). MPMN is a bench-stable, carbon-bound electrophilic CN reagent that does not release cyanide under the reaction conditions. A variety of medicinally relevant benzonitriles can be made in good yields. Addition of NaBr to the reaction mixture allows for the use of more challenging aryl electrophiles such as aryl chlorides, tosylates, and triflates. Mechanistic investigations suggest that NaBr plays a role in facilitating oxidative addition with these substrates.
Transformation of aromatic bromides into aromatic nitriles with n-BuLi, pivalonitrile, and iodine under metal cyanide-free conditions
Uchida, Ko,Togo, Hideo
, (2019/09/04)
Various aromatic nitriles could be obtained in good yields by the treatment of aryl bromides with n-butyllithium and then pivalonitrile, followed by the treatment with molecular iodine at 70 °C, without metal cyanides under transition-metal-free conditions. The present reaction proceeds through the radical β-elimination of imino-nitrogen-centered radicals formed from the reactions of imines and N-iodoimines under warming conditions.
Nickel-Catalyzed Decarbonylative Cyanation of Acyl Chlorides
Wang, Zhenhua,Wang, Xiu,Ura, Yasuyuki,Nishihara, Yasushi
supporting information, p. 6779 - 6784 (2019/08/26)
Ni-catalyzed decarbonylative cyanation of acyl chlorides with trimethylsilyl cyanide has been achieved. This transformation is applicable to the synthesis of an array of nitrile compounds bearing a wide range of functional groups under neutral conditions. The step-by-step experimental studies revealed that the reaction sequences of the present catalytic reaction are oxidative addition, transmetalation, decarbonylation, and reductive elimination.