27251-84-9Relevant articles and documents
Kinetic and NMR spectroscopic study of the chemical stability and reaction pathways of sugar nucleotides
Jaakkola, Juho,Nieminen, Anu,Kivel?, Henri,Korhonen, Heidi,T?htinen, Petri,Mikkola, Satu
, p. 178 - 193 (2020/12/21)
The alkaline cleavage of two types of sugar nucleotides has been studied by 1H and 31P NMR in order to obtain information on the stability and decomposition pathways in aqueous solutions under alkaline conditions. The reaction of glucose 1-UDP is straightforward, and products are easy to identify. The results obtained with ribose 5-UDP and ribose 5-phosphate reveal, in contrast, a more complex reaction system than expected, and the identification of individual intermediate species was not possible. Even though definite proof for the mechanisms previously proposed could not be obtained, all the spectroscopic evidence is consistent with them. Results also emphasise the significant effect of conditions, pH, ionic strength, and temperature, on the reactivity under chemical conditions.
Toward Automated Enzymatic Glycan Synthesis in a Compartmented Flow Microreactor System
Heinzler, Raphael,Fisch?der, Thomas,Elling, Lothar,Franzreb, Matthias
supporting information, p. 4506 - 4516 (2019/08/20)
Immobilized microfluidic enzyme reactors (IMER) are of particular interest for automation of enzyme cascade reactions. Within an IMER, substrates are converted by paralleled immobilized enzyme modules and intermediate products are transported for further conversion by subsequent enzyme modules. By optimizing substrate conversion in the spatially separated enzyme modules purification of intermediate products is not necessary, thus shortening process time and increasing space-time yields. The IMER enables the development of efficient enzyme cascades by combining compatible enzymatic reactions in different arrangements under optimal conditions and the possibility of a cost-benefit analysis prior to scale-up. These features are of special interest for automation of enzymatic glycan synthesis. We here demonstrate a compartmented flow microreactor system using six magnetic enzyme beads (MEBs) for the synthesis of the non-sulfated human natural killer cell-1 (HNK-1) glycan epitope. MEBs are assembled to build compartmented enzyme modules, consisting of enzyme cascades for the synthesis of uridine 5′- diphospho-α- d-galactose (UDP-Gal) and uridine 5′-diphospho-α-d-glucuronic acid (UDP-GlcA), the donor substrates for the Leloir glycosyltransferases β4-galactosyltransferase and β3-glucuronosyltransferase, respectively. Glycan synthesis was realized in an automated microreactor system by a cascade of individual enzyme module compartments each performing under optimal conditions. The products were analyzed inline by an MS-system connected to the microreactor. The high synthesis yield of 96% for the non-sulfated HNK-1 glycan epitope indicates the excellent performance of the automated enzyme module cascade. Furthermore, combinations of other MEBs for nucleotide sugars synthesis with MEBs of glycosyltransferases have the potential for a fully automated and programmed glycan synthesis in a compartmented flow microreactor system. (Figure presented.).
Design of an in vitro biocatalytic cascade for the manufacture of islatravir
Huffman, Mark A.,Fryszkowska, Anna,Alvizo, Oscar,Borra-Garske, Margie,Campos, Kevin R.,Canada, Keith A.,Devine, Paul N.,Duan, Da,Forstater, Jacob H.,Grosser, Shane T.,Halsey, Holst M.,Hughes, Gregory J.,Jo, Junyong,Joyce, Leo A.,Kolev, Joshua N.,Liang, Jack,Maloney, Kevin M.,Mann, Benjamin,Marshall, Nicholas M.,McLaughlin, Mark,Moore, Jeffrey C.,Murphy, Grant S.,Nawrat, Christopher C.,Nazor, Jovana,Novick, Scott,Patel, Niki R.,Rodriguez-Granillo, Agustina,Robaire, Sandra A.,Sherer, Edward C.,Truppo, Matthew D.,Whittaker, Aaron M.,Verma, Deeptak,Xiao, Li,Xu, Yingju,Yang, Hao
, p. 1255 - 1259 (2019/12/24)
Enzyme-catalyzed reactions have begun to transform pharmaceutical manufacturing, offering levels of selectivity and tunability that can dramatically improve chemical synthesis. Combining enzymatic reactions into multistep biocatalytic cascades brings additional benefits. Cascades avoid the waste generated by purification of intermediates. They also allow reactions to be linked together to overcome an unfavorable equilibrium or avoid the accumulation of unstable or inhibitory intermediates. We report an in vitro biocatalytic cascade synthesis of the investigational HIV treatment islatravir. Five enzymes were engineered through directed evolution to act on non-natural substrates. These were combined with four auxiliary enzymes to construct islatravir from simple building blocks in a three-step biocatalytic cascade. The overall synthesis requires fewer than half the number of steps of the previously reported routes.
β-Glucose-1,6-Bisphosphate stabilizes pathological phophomannomutase2 mutants in vitro and represents a lead compound to develop pharmacological chaperones for the most common disorder of glycosylation, PMM2-CDG
Monticelli, Maria,Liguori, Ludovica,Allocca, Mariateresa,Andreotti, Giuseppina,Cubellis, Maria Vittoria
, (2019/10/22)
A large number of mutations causing PMM2-CDG, which is the most frequent disorder of glycosylation, destabilize phosphomannomutase2. We looked for a pharmacological chaperone to cure PMM2-CDG, starting from the structure of a natural ligand of phosphomannomutase2, α-glucose-1,6-bisphosphate. The compound, β-glucose-1,6-bisphosphate, was synthesized and characterized via 31P-NMR. β-glucose-1,6-bisphosphate binds its target enzyme in silico. The binding induces a large conformational change that was predicted by the program PELE and validated in vitro by limited proteolysis. The ability of the compound to stabilize wild type phosphomannomutase2, as well as frequently encountered pathogenic mutants, was measured using thermal shift assay. β-glucose-1,6-bisphosphate is relatively resistant to the enzyme that specifically hydrolyses natural esose-bisphosphates.
A mutant of phosphomannomutase1 retains full enzymatic activity, but is not activated by IMP: Possible implications for the disease PMM2-CDG
Citro, Valentina,Cimmaruta, Chiara,Liguori, Ludovica,Viscido, Gaetano,Cubellis, Maria Vittoria,Andreotti, Giuseppina
, (2017/12/28)
The most frequent disorder of glycosylation, PMM2-CDG, is caused by a deficiency of phosphomannomutase activity. In humans two paralogous enzymes exist, both of them require mannose 1,6-bis-phosphate or glucose 1,6-bis-phosphate as activators, but only phospho-mannomutase1 hydrolyzes bis-phosphate hexoses. Mutations in the gene encoding phos-phomannomutase2 are responsible for PMM2-CDG. Although not directly causative of the disease, the role of the paralogous enzyme in the disease should be clarified. Phosphoman-nomutase1 could have a beneficial effect, contributing to mannose 6-phosphate isomerization, or a detrimental effect, hydrolyzing the bis-phosphate hexose activator. A pivotal role in regulating mannose-1phosphate production and ultimately protein glycosylation might be played by inosine monophosphate that enhances the phosphatase activity of phosphoman-nomutase1. In this paper we analyzed human phosphomannomutases by conventional enzymatic assays as well as by novel techniques such as 31P-NMR and thermal shift assay. We characterized a triple mutant of phospomannomutase1 that retains mutase and phosphatase activity, but is unable to bind inosine monophosphate.
Two-Step Chemoenzymatic Detection of N-Acetylneuraminic Acid-α(2-3)-Galactose Glycans
Wen, Liuqing,Zheng, Yuan,Jiang, Kuan,Zhang, Mingzhen,Kondengaden, Shukkoor Muhammed,Li, Shanshan,Huang, Kenneth,Li, Jing,Song, Jing,Wang, Peng George
supporting information, p. 11473 - 11476 (2016/10/07)
Sialic acids are typically linked α(2-3) or α(2-6) to the galactose that located at the non-reducing terminal end of glycans, playing important but distinct roles in a variety of biological and pathological processes. However, details about their respective roles are still largely unknown due to the lack of an effective analytical technique. Herein, a two-step chemoenzymatic approach for the rapid and sensitive detection of N-acetylneuraminic acid-α(2-3)-galactose glycans is described.
Efficient chemoenzymatic synthesis of novel galacto-N-biose derivatives and their sialylated forms
Li, Lei,Liu, Yonghui,Li, Tiehai,Wang, Wenjun,Yu, Zaikuan,Ma, Cheng,Qu, Jingyao,Zhao, Wei,Chen, Xi,Wang, Peng G.
supporting information, p. 10310 - 10313 (2015/06/25)
Galacto-N-biose (GNB) derivatives were efficiently synthesized from galactose derivatives via a one-pot two-enzyme system containing two promiscuous enzymes from Bifidobacterium infantis: a galactokinase (BiGalK) and a d-galactosyl-β1-3-N-acetyl-d-hexosamine phosphorylase (BiGalHexNAcP). Mono-sialyl and di-sialyl galacto-N-biose derivatives were then prepared using a one-pot two-enzyme system containing a CMP-sialic acid synthetase and an α2-3-sialyltransferase or an α2-6-sialyltransferase.
Facile enzymatic synthesis of sugar 1-phosphates as substrates for phosphorylases using anomeric kinases
Liu, Yuan,Nishimoto, Mamoru,Kitaoka, Motomitsu
, p. 1 - 4 (2015/02/19)
Three sugar 1-phosphates that are donor substrates for phosphorylases were produced at the gram scale from phosphoenolpyruvic acid and the corresponding sugars by the combined action of pyruvate kinase and the corresponding anomeric kinases in good yields. These sugar 1-phosphates were purified through two electrodialysis steps. α-d-Galactose 1-phosphate was finally isolated as crystals of dipotassium salts. α-d-Mannose 1-phosphate and 2-acetamido-2-deoxy-α-d-glucose 1-phosphate were isolated as crystals of bis(cyclohexylammonium) salts.
Engineering the specificity of trehalose phosphorylase as a general strategy for the production of glycosyl phosphates
Chen, Chao,Van Der Borght, Jef,De Vreese, Rob,D'Hooghe, Matthias,Soetaert, Wim,Desmet, Tom
supporting information, p. 7834 - 7836 (2014/07/08)
A two-step process is reported for the anomeric phosphorylation of galactose, using trehalose phosphorylase as biocatalyst. The monosaccharide enters this process as acceptor but can subsequently be released from the donor side, thanks to the non-reducing nature of the disaccharide intermediate. A key development was the creation of an optimized enzyme variant that displays a strict specificity (99%) for β-galactose 1-phosphate as product. This journal is the Partner Organisations 2014.