30163-20-3Relevant articles and documents
Bi-enzymatic Conversion of Cinnamic Acids to 2-Arylethylamines
Weise, Nicholas J.,Thapa, Prasansa,Ahmed, Syed T.,Heath, Rachel S.,Parmeggiani, Fabio,Turner, Nicholas J.,Flitsch, Sabine L.
, p. 995 - 998 (2020/01/21)
The conversion of carboxylic acids, such as acrylic acids, to amines is a transformation that remains challenging in synthetic organic chemistry. Despite the ubiquity of similar moieties in natural metabolic pathways, biocatalytic routes seem to have been overlooked for this purpose. Herein we present the conception and optimisation of a two-enzyme system, allowing the synthesis of β-phenylethylamine derivatives from readily-available ring-substituted cinnamic acids. After characterisation of both parts of the reaction in a two-step approach, a set of conditions allowing the one-pot biotransformation was optimised. This combination of a reversible deaminating and irreversible decarboxylating enzyme, both specific for the amino acid intermediate in tandem, represents a general method by which new strategies for the conversion of carboxylic acids to amines could be designed.
Organocatalytic Enantioselective Addition of α-Aminoalkyl Radicals to Isoquinolines
Liu, Xiangyuan,Liu, Yang,Chai, Guobi,Qiao, Baokun,Zhao, Xiaowei,Jiang, Zhiyong
supporting information, p. 6298 - 6301 (2018/10/09)
With a dual organocatalytic system involving a chiral phosphoric acid and a dicyanopyrazine-derived chromophore (DPZ) photosensitizer and under the irradiation with visible light, an enantioselective Minisci-type addition of α-amino acid-derived redox-active esters (RAEs) to isoquinolines has been developed. A variety of prochiral α-aminoalkyl radicals generated from RAEs were successfully introduced on isoquinolines, providing a range of valuable α-isoquinoline-substituted chiral secondary amines in high yields with good to excellent enantioselectivities.
Hydroxyethylene sulfones as a new scaffold to address aspartic proteases: Design, synthesis, and structural characterization
Specker, Edgar,B?ttcher, Jark,Heine, Andreas,Sotriffer, Christoph A.,Lilie, Hauke,Schoop, Andreas,Müller, Gerhard,Griebenow, Nils,Klebe, Gerhard
, p. 6607 - 6619 (2007/10/03)
Hydroxyethylene sulfones were developed as novel scaffolds against aspartyl proteases. A diastereoselective synthesis has been established to introduce the required side chain decoration with desired stereochemistry. Depending on the substitution of the h