3959-05-5Relevant articles and documents
Scope and limitations of reductive amination catalyzed by half-sandwich iridium complexes under mild reaction conditions
Nguyen, Dat P.,Sladek, Rudolph N.,Do, Loi H.
supporting information, (2020/07/15)
The conversion of aldehydes and ketones to 1° amines could be promoted by half-sandwich iridium complexes using ammonium formate as both the nitrogen and hydride source. To optimize this method for green chemical synthesis, we tested various carbonyl substrates in common polar solvents at physiological temperature (37 °C) and ambient pressure. We found that in methanol, excellent selectivity for the amine over alcohol/amide products could be achieved for a broad assortment of carbonyl-containing compounds. In aqueous media, selective reduction of carbonyls to 1° amines was achieved in the absence of acids. Unfortunately, at Ir catalyst concentrations of 1 mM in water, reductive amination efficiency dropped significantly, which suggest that this catalytic methodology might be not suitable for aqueous applications where very low catalyst concentration is required (e.g., inside living cells).
Ultra-small cobalt nanoparticles from molecularly-defined Co-salen complexes for catalytic synthesis of amines
Beller, Matthias,Chandrashekhar, Vishwas G.,Gawande, Manoj B.,Jagadeesh, Rajenahally V.,Kalevaru, Narayana V.,Kamer, Paul C. J.,Senthamarai, Thirusangumurugan,Zbo?il, Radek
, p. 2973 - 2981 (2020/03/27)
We report the synthesis of in situ generated cobalt nanoparticles from molecularly defined complexes as efficient and selective catalysts for reductive amination reactions. In the presence of ammonia and hydrogen, cobalt-salen complexes such as cobalt(ii)-N,N′-bis(salicylidene)-1,2-phenylenediamine produce ultra-small (2-4 nm) cobalt-nanoparticles embedded in a carbon-nitrogen framework. The resulting materials constitute stable, reusable and magnetically separable catalysts, which enable the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds and ammonia. The isolated nanoparticles also represent excellent catalysts for the synthesis of primary, secondary as well as tertiary amines including biologically relevant N-methyl amines.
Reusable Nickel Nanoparticles-Catalyzed Reductive Amination for Selective Synthesis of Primary Amines
Murugesan, Kathiravan,Beller, Matthias,Jagadeesh, Rajenahally V.
supporting information, p. 5064 - 5068 (2019/03/19)
The preparation of nickel nanoparticles as efficient reductive amination catalysts by pyrolysis of in situ generated Ni-tartaric acid complex on silica is presented. The resulting stable and reusable Ni-nanocatalyst enables the synthesis of functionalized and structurally diverse primary benzylic, heterocyclic and aliphatic amines starting from inexpensive and readily available carbonyl compounds and ammonia in presence of molecular hydrogen. Applying this Ni-based amination protocol, -NH2 moiety can be introduced in structurally complex compounds, for example, steroid derivatives and pharmaceuticals.
Platinum-(phosphinito-phosphinous acid) complexes as bi-talented catalysts for oxidative fragmentation of piperidinols: An entry to primary amines
Membrat, Romain,Vasseur, Alexandre,Moraleda, Delphine,Michaud-Chevallier, Sabine,Martinez, Alexandre,Giordano, Laurent,Nuel, Didier
, p. 37825 - 37829 (2019/12/03)
Platinum-(phosphinito-phosphinous acid) complex catalyzes the oxidative fragmentation of hindered piperidinols according to a hydrogen transfer induced methodology. This catalyst acts successively as both a hydrogen carrier and soft Lewis acid in a one pot-two steps process. This method can be applied to the synthesis of a wide variety of primary amines in a pure form by a simple acid-base extraction without further purification.
Palladium-Catalyzed α-Arylation of Silylenol Ethers in the Synthesis of Isoquinolines and Phenanthridines
Saini, Gaurav,Kumar, Pravin,Kumar, Gangam Srikanth,Mangadan, Arun Raj Kizhakkayil,Kapur, Manmohan
supporting information, p. 441 - 444 (2018/01/28)
A diverse array of isoquinolines and phenanthridines have been accessed by developing a two-step, one-pot method constituting regioselective palladium-catalyzed Kuwajima-Urabe α-arylation of silylenol ethers and acid-mediated deprotection, annulation, and aromatization. Structural diversity in the silylenol ethers leads to three different classes of isoquinolines and phenanthridines from which related natural products can be derived. The synthetic utility of this method by the quick assembly of the natural product trispheridine is also demonstrated.
MOF-derived cobalt nanoparticles catalyze a general synthesis of amines
Jagadeesh, Rajenahally V.,Murugesan, Kathiravan,Alshammari, Ahmad S.,Neumann, Helfried,Pohl, Marga-Martina,Radnik, J?rg,Beller, Matthias
, p. 326 - 332 (2017/09/28)
The development of base metal catalysts for the synthesis of pharmaceutically relevant compounds remains an important goal of chemical research. Here, we report that cobalt nanoparticles encapsulated by a graphitic shell are broadly effective reductive amination catalysts. Their convenient and practical preparation entailed template assembly of cobaltdiamine- dicarboxylic acid metal organic frameworks on carbon and subsequent pyrolysis under inert atmosphere.The resulting stable and reusable catalysts were active for synthesis of primary, secondary, tertiary, and N-methylamines (more than 140 examples).The reaction couples easily accessible carbonyl compounds (aldehydes and ketones) with ammonia, amines, or nitro compounds, and molecular hydrogen under industrially viable and scalable conditions, offering cost-effective access to numerous amines, amino acid derivatives, and more complex drug targets.
A method for the production of primary amines
-
Paragraph 0207, (2016/10/09)
The invention relates to the field of chemical industry and particularly relates to a method for preparing primary amine by using the raw materials including halogenated hydrocarbon (or hydrocarbon alcohol sulfonate) and ammonia water (or formamide). The method comprises the following three steps: (1) imidization: 3,4-diarylfuran-2,5-diketone (I) reacts with ammonia (or formamide) and the like to obtain 3,4-diaryl-1H-pyrrole-2,5-diketone (II); (2) N-hydrocarbylation: 3,4-diaryl-1H-pyrrole-2,5-diketone (II) generates an N-hydrocarbylation reaction with halogenated hydrocarbon (or hydrocarbon alcohol sulfonate) in the presence of alkali to obtain N-hydrocarbyl-3,4-diaryl-1H-pyrrole-2,5-diketone (III); and (3) hydrolysis: N-hydrocarbyl-3,4-diaryl-1H-pyrrole-2,5-diketone (III) is subjected to alkali hydrolysis to obtain primary amine and the generated 2,3-diaryl maleate is subjected to acid treatment and automatic ring closing to form 3,4-diaryl furan-2,5-diketone (I) which is subjected to imidization and directly applied to the N-hydrocarbylation reaction. The method provided by the invention has the characteristics that the 3,4-diaryl furan-2,5-diketone can be circularly used at a high recovery rate, the molar ratio of the raw materials is low, and the yield of the product primary amine is high.
CuI-catalyzed coupling of gem-dibromovinylanilides and sulfonamides: An efficient method for the synthesis of 2-amidoindoles and indolo[1,2-a] quinazolines
Kiruthika, Selvarangam E.,Perumal, Paramasivan Thirumalai
supporting information, p. 484 - 487 (2014/04/03)
A Cu(I)-catalyzed, intermolecular protocol for the synthesis of 2-amidoindoles and tetrahydroindolo[1,2-a]quinazolines in shorter time and high yields is reported. The key highlight of this disclosure is the formation of 2-amidoindole and tetrahydroindolo[1,2-a]quinazoline moieties directly from gem-dibromovinylanilides and sulfonamides in a one-pot fashion through the in situ formation of ynamides followed by a base-promoted intramolecular hydroamidation.
Fe3O4-SiO2-P4VP pH-sensitive microgel for immobilization of nickel nanoparticles: An efficient heterogeneous catalyst for nitrile reduction in water
Nabid, Mohammad Reza,Bide, Yasamin,Niknezhad, Mahvash
, p. 538 - 546 (2014/03/21)
Fe3O4 magnetic nanoparticles (MNPs) were modified with (3-aminopropyl)triethoxysilane through silanization. An atom transfer radical polymerization-initiating site immobilized onto amine-functionalized Fe3O4 MNPs. The surface-initiated atom transfer radical polymerization of 4-vinylpyridine was then performed in the presence of Fe 3O4-SiO2-Br nanoparticles, which led to the formation of Fe3O4-SiO2-P4VP [P4VP=poly(4-vinylpyridine)] hybrid microgels cross-linked with Fe 3O4 MNPs. Our approach uses polymer microgels as templates for the synthesis of nickel nanoparticles (NiNPs). The tunable properties of synthesized NiNPs@Fe3O4-SiO2-P4VP pH-sensitive microgels were used in the catalytic reduction of aliphatic and aromatic nitriles. Moreover, the catalytic activity of metal nanocomposites that can be modulated by the volume transition of microgel structures with changing pH has been evaluated. TEM, X-ray photoelectron spectroscopy, thermogravimetric analysis, atomic absorption spectroscopy, XRD, UV/Vis spectroscopy, and FTIR spectroscopy were used to characterize the resultant catalyst. Mystery solved: Our approach uses polymer microgels as templates for the synthesis of nickel nanoparticles. The tunable properties of synthesized NiNPs@Fe3O 4-SiO2-P4VP [NiNPs=nickel nanoparticles; P4VP=poly(4-vinylpyridine)] pH-sensitive microgels are used in the catalytic reduction of aliphatic and aromatic nitriles. Moreover, the catalytic activity of metal nanocomposites that can be modulated by the volume transition of microgel structures with changing pH has been evaluated. Copyright
Experimental and computational study of 6- Exo and 7- Endo cyclization of aryl radicals followed by Tandem SRN1 Substitution
Peisino, Lucas E.,Pierini, Adriana B.
, p. 4719 - 4729 (2013/07/11)
The reaction of N-allyl-N-(2-halobenzyl)-acetamides and derivatives was investigated in liquid ammonia under irradiation with the nucleophiles Me 3Sn-, Ph2P- and O 2NCH2-. Following this procedure, novel substituted 2-acetyl-1,2,3,4-tetrahydroisoquinolines and substituted 2-acetyl-2,3,4,5-tetrahydro-1H-benzo[c]azepines were obtained in good yields. These reactions are proposed to occur through the intermediacy of aryl radicals, which by intramolecular 6-exo or 7-endo attack to a double bond cyclize to give aliphatic radicals, which react along the propagation steps of the S RN1 chain cycle to afford the cyclic substituted compounds as main products. The reactions were modeled with DFT methods, which provide a rational understanding that relates the product distribution to the structure of the aliphatic radicals proposed as intermediates and the kinetic of their formation.