39615-34-4Relevant articles and documents
Synthesis and photosensitized oxygenation of cyclopropylidenecyclobutenes
Sharon, Ofer,Frimer, Aryeh A.
, p. 8153 - 8162 (2003)
Cyclopropylidenecyclobutenes and -cyclobutanes were conveniently prepared using the Petasis titanocene approach. The cyclobutenes were unreactive to singlet oxygen, reacting sluggishly via a photoinitiated free radical autooxidative epoxidation process, to yield the corresponding spiroketones. By contrast, cyclopropylidenecyclobutanes react rapidly with 1O 2, via an 'ene' process, initially generating a cyclopropyl hydroperoxide, which proceeds to products via Hock cleavage. The inertness of cyclopropylidenecyclobutenes to a 1O2 'ene' reaction mode may be attributed to the fact that it would require the formation of the relatively high energy cyclobutadiene moiety.
Silylium-Ion-Promoted (5+1) Cycloaddition of Aryl-Substituted Vinylcyclopropanes and Hydrosilanes Involving Aryl Migration
Bonetti, Vittorio,He, Tao,Klare, Hendrik F. T.,Oestreich, Martin,Wang, Guoqiang
supporting information, p. 12186 - 12191 (2020/05/22)
A transition-metal-free (5+1) cycloaddition of aryl-substituted vinylcyclopropanes (VCPs) and hydrosilanes to afford silacyclohexanes is reported. Catalytic amounts of the trityl cation initiate the reaction by hydride abstraction from the hydrosilane, and further progress of the reaction is maintained by self-regeneration of the silylium ions. The new reaction involves a [1,2] migration of an aryl group, eventually furnishing 4- rather than 3-aryl-substituted silacyclohexane derivatives as major products. Various control experiments and quantum-chemical calculations support a mechanistic picture where a silylium ion intramolecularly stabilized by a cyclopropane ring can either undergo a kinetically favored concerted [1,2] aryl migration/ring expansion or engage in a cyclopropane-to-cyclopropane rearrangement.
B(C6F5)3-Catalyzed Hydrosilylation of Vinylcyclopropanes
He, Tao,Long, Peng-Wei,Oestreich, Martin
supporting information, p. 7383 - 7386 (2020/10/12)
A hydrosilylation of vinylcyclopropanes (VCPs) catalyzed by the strong boron Lewis acid B(C6F5)3 is reported. For the majority of VCPs, little or no ring opening of the cyclopropyl unit is observed. Conversely, for VCPs with bulky R groups, such as ortho-substituted aryl rings or branched alkyl residues, ring opening is the exclusive reaction pathway. This finding is explained by the thwarted hydride delivery to a sterically shielded, β-silicon-stabilized cyclopropylcarbinyl cation intermediate.
Mild Ring Contractions of Cyclobutanols to Cyclopropyl Ketones via Hypervalent Iodine Oxidation
Sun, Yan,Huang, Xin,Li, Xiaojin,Luo, Fan,Zhang, Lei,Chen, Mengyuan,Zheng, Shiya,Peng, Bo
, p. 1082 - 1087 (2018/01/27)
An iodine-mediated oxidative ring contraction of cyclobutanols has been developed. The reaction allows the synthesis of a wide range of aryl cyclopropyl ketones under mild and eco-friendly conditions. A variety of functional groups including aromatic or alkyl halides, ethers, esters, ketones, alkenes, and even aldehydes are nicely tolerated in the reaction. This is in contrast with traditional synthetic approaches for which poor functional group tolerance is often a problem. The practicality of the method is also highlighted by the tunability of iodine oxidation system. Specifically, combining the iodine(III) reagent with an appropriate base allows the reaction to accommodate a range of challenging electron-rich arene substrates. The facile scalability of this reaction is also exhibited herein. (Figure presented.).
Palladium-Catalyzed Carbonylative Cross-Coupling Reaction between Aryl(Heteroaryl) Iodides and Tricyclopropylbismuth: Expedient Access to Aryl Cyclopropylketones
Benoit, Emeline,Dansereau, Julien,Gagnon, Alexandre
supporting information, p. 2833 - 2838 (2017/10/06)
The carbonylative cross-coupling reaction between aryl and heteroaryl iodides and tricyclopropylbismuth is reported. The reaction is catalyzed by (SIPr)Pd(allyl)Cl, a NHC-palladium(II) catalyst, operates under 1 atm of carbon monoxide and tolerates a wide range of functional groups. The use of lithium chloride was found to provide higher yields of the desired aryl cyclopropylketones. The conditions were also applied to the carbonylative cross-coupling of an iodoalkene to afford the corresponding alkenyl cyclopropylketone.
RhI-catalyzed benzo/[7+1] cycloaddition of cyclopropyl-benzocyclobutenes and CO by merging thermal and metal-catalyzed C-C bond cleavages
Fu, Xu-Fei,Xiang, Yu,Yu, Zhi-Xiang
, p. 4242 - 4246 (2015/03/14)
A Rh-catalyzed benzo/[7+1] cycloaddition of cyclopropyl-benzocyclobutenes (CP-BCBs) and CO to benzocyclooctenones has been developed. In this reaction, CP-BCB acts as a benzo/7-C synthon and the reaction involves two C-C bond cleavages: a thermal electrocyclic ring-opening of the four-membered ring in CP-BCB and a Rh-catalyzed C-C cleavage of the cyclopropane ring.
New aminopropandiol derivatives as orally available and short-acting calcium-sensing receptor antagonists
Shinagawa, Yuko,Inoue, Teruhiko,Hirata, Kazuyuki,Katsushima, Takeo,Nakagawa, Takashi,Matsuo, Yushi,Shindo, Masanori,Hashimoto, Hiromasa
scheme or table, p. 3809 - 3813 (2010/08/20)
Synthesis and structure-activity relationship studies on a new aminopropandiol class of derivatives as calcium-sensing receptor antagonists are described. Modification of the phenolic moiety of a calcilytic compound NPS 2143 led to the identification of a
Calcium receptor antagonist
-
Page 28, (2010/11/30)
A compound of the formula [I] wherein R1 is optionally substituted aryl group or optionally substituted heteroaryl group; R2 is optionally substituted C1-6 alkyl group, C3-7 cycloalkyl group and the like; R3 is hydrogen atom, C1-6 alkyl group, hydroxyl group and the like; R4 is hydrogen atom, C1-6 alkyl group and the like; R5 and R6 are each C1-6 alkyl group and the like; R7 is optionally substituted aryl group or optionally substituted heteroaryl group; X1, X2 and X3 are each C1-6 alkylene group and the like; and X4 and X5 are each a single bond, methylene group and the like, a salt thereof, a solvate thereof or a prodrug thereof, and a pharmaceutical composition containing the compound, particularly a calcium receptor antagonist and a therapeutic agent for osteoporosis, are provided. The compound of the present invention is useful as a therapeutic drug of diseases accompanied by abnormal calcium homeostasis, or osteoporosis, hypoparathyreosis, osteosarcoma, periodontal disease, bone fracture, steoarthrosis, chronic rheumatoid arthritis, Paget's disease, humoral hypercalcemia, autosomal dominant hypocalcemia and the like. In addition, an intermediate for the compound is provided.
CALCIUM RECEPTOR ANTAGONISTS
-
, (2008/06/13)
wherein R1 is optionally substituted aryl group or optionally substituted heteroaryl group; R2 is optionally substituted C1-6 alkyl group, C3-7 cycloalkyl group and the like; R3 is hydrogen atom, C1-6 alkyl group, hydroxyl group and the like; R4 is hydrogen atom, C1-6 alkyl group and the like; R5 and R6 are each C1-6 alkyl group and the like; R7 is optionally substituted aryl group or optionally substituted heteroaryl group; X1, X2 and X3 are each C1-6 alkylene group and the like; and X4 and X5 are each a single bond, methylene group and the like, a salt thereof, a solvate thereof or a prodrug thereof, and a pharmaceutical composition containing the compound, particularly a calcium receptor antagonist and a therapeutic agent for osteoporosis, are provided. The compound of the present invention is useful as a therapeutic drug of diseases accompanied by abnormal calcium homeostasis, or osteoporosis, hypoparathyreosis, osteosarcoma, periodontal disease, bone fracture, steoarthrosis, chronic rheumatoid arthritis, Paget's disease, humoral hypercalcemia, autosomal dominant hypocalcemia and the like. In addition, an intermediate for the compound is provided.