Welcome to LookChem.com Sign In|Join Free

CAS

  • or
bis(benzyloxy)diphenylsilane is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

50870-65-0 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 50870-65-0 Structure
  • Basic information

    1. Product Name: bis(benzyloxy)diphenylsilane
    2. Synonyms: bis(benzyloxy)diphenylsilane
    3. CAS NO:50870-65-0
    4. Molecular Formula:
    5. Molecular Weight: 396.561
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 50870-65-0.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: N/A
    3. Flash Point: N/A
    4. Appearance: N/A
    5. Density: N/A
    6. Refractive Index: N/A
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. CAS DataBase Reference: bis(benzyloxy)diphenylsilane(CAS DataBase Reference)
    10. NIST Chemistry Reference: bis(benzyloxy)diphenylsilane(50870-65-0)
    11. EPA Substance Registry System: bis(benzyloxy)diphenylsilane(50870-65-0)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 50870-65-0(Hazardous Substances Data)

50870-65-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 50870-65-0 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,0,8,7 and 0 respectively; the second part has 2 digits, 6 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 50870-65:
(7*5)+(6*0)+(5*8)+(4*7)+(3*0)+(2*6)+(1*5)=120
120 % 10 = 0
So 50870-65-0 is a valid CAS Registry Number.

50870-65-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name Ph2Si(OCH2Ph)2

1.2 Other means of identification

Product number -
Other names bis(benzyloxy)diphenylsilane

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:50870-65-0 SDS

50870-65-0Relevant articles and documents

Cooperative metal-ligand reactivity and catalysis in low-spin ferrous alkoxides

Chu, Wan-Yi,Zhou, Xiaoyuan,Rauchfuss, Thomas B.

, p. 1619 - 1625 (2015)

This report describes examples of combined Fe- and O-centered reactivity of Fe(P2O2)(CO)2 (1), where P2O2 is the diphosphinoglycolate (Ph2PC6H4CHO)22-

Hydrosilylation of Aldehydes and Ketones Catalyzed by a 2-Iminopyrrolyl Alkyl-Manganese(II) Complex

Cruz, Tiago F. C.,Veiros, Luís F.,Gomes, Pedro T.

supporting information, p. 1195 - 1206 (2022/01/11)

A well-defined and very active single-component manganese(II) catalyst system for the hydrosilylation of aldehydes and ketones is presented. First, the reaction of 5-(2,4,6-iPr3C6H2)-2-[N-(2,6-iPr2C6H3)formimino]pyrrolyl potassium (KL) and [MnCl2(Py)2] afforded the binuclear 2-iminopyrrolyl manganese(II) pyridine chloride complex [Mn2{κ2N,N′-5-(2,4,6-iPr3C6H2)-NC4H2-2-C(H)═N(2,6-iPr2C6H3)}2(Py)2(μ-Cl)2] 1. Subsequently, the alkylation reaction of complex 1 with LiCH2SiMe3 afforded the respective (trimethylsilyl)methyl-Mn(II) complex [Mn{κ2N,N′-5-(2,4,6-iPr3C6H2)-NC4H2-2-C(H)═N(2,6-iPr2C6H3)}(Py)CH2SiMe3] 2 in a good yield. Complexes 1 and 2 were characterized by elemental analysis, 1H NMR spectroscopy, Evans' method, FTIR spectroscopy, and single-crystal X-ray diffraction. While the crystal structure of complex 1 has been identified as a binuclear entity, in which the Mn(II) centers present pentacoordinate coordination spheres, that of complex 2 corresponds to a monomer with a distorted tetrahedral coordination geometry. Complex 2 proved to be a very active precatalyst for the atom-economic hydrosilylation of several aldehydes and ketones under very mild conditions, with a maximum turnover frequency of 95 min-1, via a silyl-Mn(II) mechanistic route, as asserted by a combination of experimental and theoretical efforts, the respective silanes were cleanly converted to the respective alcoholic products in high yields.

N-Heterocyclic Carbene Complexes of Nickel, Palladium, and Iridium Derived from Nitron: Synthesis, Structures, and Catalytic Properties

Quinlivan, Patrick J.,Loo, Aaron,Shlian, Daniel G.,Martinez, Joan,Parkin, Gerard

, p. 166 - 183 (2021/02/05)

The mesoionic compound (1,4-diphenyl-1,2,4-triazol-4-ium-3-yl)phenylazanide, commonly referred to as Nitron, has been employed as a "crypto-NHC"to afford 1,2,4-triazolylidene compounds of nickel, palladium, and iridium. Specifically, Nitron reacts with NiBr2, PdCl2, and [Ir(COD)Cl]2 to afford the N-heterocyclic carbene complexes (NitronNHC)2NiBr2, (NitronNHC)2PdCl2, and (NitronNHC)Ir(COD)Cl, respectively. The lattermost compound reacts with (i) CO to afford the dicarbonyl compound (NitronNHC)Ir(CO)2Cl and (ii) CO, in the presence of PPh3, to afford the monocarbonyl compound (NitronNHC)Ir(PPh3)(CO)Cl. Structural studies on (NitronNHC)Ir(COD)Cl and (NitronNHC)Ir(CO)2Cl indicate that NitronNHC has a stronger trans influence than does Cl; furthermore, IR spectroscopic studies on (NitronNHC)Ir(CO)2Cl indicate that NitronNHC is electronically similar to the structurally related Enders carbene but is less electron donating than imidazol-2-ylidenes with aryl substituents. Significantly, the NitronNHC ligand affords catalytic systems, as illustrated by the ability of (NitronNHC)Ir(CO)2Cl to effect (i) the dehydrogenation of formic acid, (ii) aldehyde hydrosilylation, (iii) dehydrocoupling of hydrosilanes and alcohols, and (iv) ketone reduction via transfer hydrogenation.

Heavier Alkaline-Earth Catalyzed Dehydrocoupling of Silanes and Alcohols for the Synthesis of Metallo-Polysilylethers

Hill, Michael S.,Mahon, Mary F.,Manners, Ian,Morris, Louis J.,S. McMenamy, Fred,Whittell, George R.

supporting information, p. 2954 - 2966 (2020/03/04)

The dehydrocoupling of silanes and alcohols mediated by heavier alkaline-earth catalysts, [Ae{N(SiMe3)2}2?(THF)2] (I–III) and [Ae{CH(SiMe3)2}2?(THF)2], (IV–VI) (Ae=Ca, Sr, Ba) is described. Primary, secondary, and tertiary alcohols were coupled to phenylsilane or diphenylsilane, whereas tertiary silanes are less tolerant towards bulky substrates. Some control over reaction selectivity towards mono-, di-, or tri-substituted silylether products was achieved through alteration of reaction stoichiometry, conditions, and catalyst. The ferrocenyl silylether, FeCp(C5H4SiPh(OBn)2) (2), was prepared and fully characterized from the ferrocenylsilane, FeCp(C5H4SiPhH2) (1), and benzyl alcohol using barium catalysis. Stoichiometric experiments suggested a reaction manifold involving the formation of Ae–alkoxide and hydride species, and a series of dimeric Ae–alkoxides [(Ph3CO)Ae(μ2-OCPh3)Ae(THF)] (3 a–c, Ae=Ca, Sr, Ba) were isolated and fully characterized. Mechanistic experiments suggested a complex reaction mechanism involving dimeric or polynuclear active species, whose kinetics are highly dependent on variables such as the identity and concentration of the precatalyst, silane, and alcohol. Turnover frequencies increase on descending Group 2 of the periodic table, with the barium precatalyst III displaying an apparent first-order dependence in both silane and alcohol, and an optimum catalyst loading of 3 mol % Ba, above which activity decreases. With precatalyst III in THF, ferrocene-containing poly- and oligosilylethers with ferrocene pendent to- (P1–P4) or as a constituent (P5, P6) of the main polymer chain were prepared from 1 or Fe(C5H4SiPhH2)2 (4) with diols 1,4-(HOCH2)2-(C6H4) and 1,4-(CH(CH3)OH)2-(C6H4), respectively. The resultant materials were characterized by NMR spectroscopy, gel permeation chromatography (GPC) and DOSY NMR spectroscopy, with estimated molecular weights in excess of 20,000 Da for P1 and P4. The iron centers display reversible redox behavior and thermal analysis showed P1 and P5 to be promising precursors to magnetic ceramic materials.

Photoactivated silicon-oxygen and silicon-nitrogen heterodehydrocoupling with a commercially available iron compound

Cibuzar, Michael P.,Hammerton, James,Reuter, Matthew B.,Waterman, Rory

supporting information, p. 2972 - 2978 (2020/03/13)

Silicon-oxygen and silicon-nitrogen heterodehydrocoupling catalyzed by the commercially available cyclopentadienyl dicarbonyl iron dimer [CpFe(CO)2]2 (1) under photochemical conditions is reported. Reactions between alcohols and PhSi

Synthesis of dialkoxydiphenylsilanes via the rhodium-catalyzed hydrosilylation of aldehydes

Nogues, Christophe,Argouarch, Gilles

supporting information, (2019/09/10)

The commercially available rhodium(I) complex [RhCl(CO)2]2 (1) was shown to be an effective catalyst for the reduction of carbonyls with organosilanes under mild conditions. This study focusses on the hydrosilylation of aldehydes with diphenylsilane leading to the isolation of a series of dialkoxydiphenylsilanes with low catalytic loading of complex 1.

Zerovalent Nickel Compounds Supported by 1,2-Bis(diphenylphosphino)benzene: Synthesis, Structures, and Catalytic Properties

Neary, Michelle C.,Quinlivan, Patrick J.,Parkin, Gerard

, p. 374 - 391 (2018/01/10)

Zerovalent nickel compounds which feature 1,2-bis(diphenylphosphino)benzene (dppbz) were obtained via the reactivity of dppbz towards Ni(PMe3)4, which affords sequentially (dppbz)Ni(PMe3)2 and Ni(dppbz)2. Furthermore, the carbonyl derivatives (dppbz)Ni(PMe3)(CO) and (dppbz)Ni(CO)2 may be obtained via the reaction of CO with (dppbz)Ni(PMe3)2. Other methods for the synthesis of these carbonyl compounds include (i) the formation of (dppbz)Ni(CO)2 by the reaction of Ni(PPh3)2(CO)2 with dppbz and (ii) the formation of (dppbz)Ni(PMe3)(CO) by the reaction of (dppbz)Ni(CO)2 with PMe3. Comparison of the ν(CO) IR spectroscopic data for (dppbz)Ni(CO)2 with other (diphosphine)Ni(CO)2 compounds provides a means to evaluate the electronic nature of dppbz. Specifically, comparison with (dppe)Ni(CO)2 indicates that the o-phenylene linker creates a slightly less electron donating ligand than does an ethylene linker. The steric impact of the dppbz ligand in relation to other diphosphine ligands has also been evaluated in terms of its buried volume (%Vbur) and steric maps. The nickel center of (dppbz)Ni(PMe3)2 may be protonated by formic acid at room temperature to afford [(dppbz)Ni(PMe3)2H]+, but at elevated temperatures, effects catalytic release of H2 from formic acid. Analogous studies with Ni(dppbz)2 and Ni(PMe3)4 indicate that the ability to protonate the nickel centers in these compounds increases in the sequence Ni(dppbz)2 3)2 3)4; correspondingly, the pKa values of the protonated derivatives increase in the sequence [Ni(dppbz)2H]+ 3)2H]+ 3)4H]+. (dppbz)Ni(PMe3)2 and Ni(PMe3)4 also serve as catalysts for the formation of alkoxysilanes by (i) hydrosilylation of PhCHO by PhSiH3 and Ph2SiH2 and (ii) dehydrocoupling of PhCH2OH with PhSiH3 and Ph2SiH2.

Dehydrogenative Coupling of Hydrosilanes and Alcohols by Alkali Metal Catalysts for Facile Synthesis of Silyl Ethers

Harinath, Adimulam,Bhattacharjee, Jayeeta,Anga, Srinivas,Panda, Tarun K.

, p. 724 - 730 (2017/05/31)

Cross-dehydrogenative coupling (CDC) of hydrosilanes with hydroxyl groups, using alkali metal hexamethyldisilazide as a single-component catalyst for the formation of Si-O bonds under mild condition, is reported. The potassium salt [KN(SiMe3)2] is highly efficient and chemoselective for a wide range of functionalized alcohols (99% conversion) under solvent-free conditions. The CDC reaction of alcohols with silanes exhibits first-order kinetics with respect to both catalyst and substrate concentrations. The most plausible mechanism for this reaction suggests that the initial step most likely involves the formation of an alkoxide followed by the formation of metal hydride as active species.

Silanol Compound, Composition, and Method for Producing Silanol Compound

-

Paragraph 0161, (2017/07/14)

The purpose of the present invention is to provide silanol compounds that can be used as raw materials of siloxane compounds and the like, and a composition of the silanol compounds, as well as to provide a production method that makes it possible to produce silanol compounds at excellent yield. A composition comprising 5 mass % to 100 mass % of a silanol compound represented by Formulas (A) to (C) can be prepared by devising to produce silanol compounds under water-free conditions, to produce silanol compounds in a solvent having the effect of suppressing the condensation of silanol compounds, and to perform other such processes, the composition being able to be used as a raw material or the like of siloxane compounds because the silanol compounds can be stably present in the resulting composition.

Nickel nanoparticles supported on graphene as catalysts for aldehyde hydrosilylation

Blandez, Juan F.,Esteve-Adell, Iván,Primo, Ana,Alvaro, Mercedes,García, Hermenegildo

, p. 13 - 19 (2015/12/08)

Nickel nanoparticles (NPs) supported on different undoped or doped with N or B graphenes (Gs) have been tested as catalyst for the hydrosilylation of aldehydes to obtain the corresponding siloxanes with high conversion and good selectivity in short reaction time. The different Gs employed were obtained by pyrolysis under inert atmosphere of alginate or chitosan, modified or not with boric acid. Then the metal NPs obtained by polyol reduction method using ethylene glycol were adsorbed on Gs. The Ni-containing G catalysts were characterized by electron microscopy, XPS and Raman spectroscopy. The scope of the Ni/G catalyst includes aliphatic and aromatic aldehydes as well as a variety of hydrosilanes.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 50870-65-0