Welcome to LookChem.com Sign In|Join Free

CAS

  • or
L-Talitol, a rare sugar alcohol, is known for its laxative properties. It is a white to off-white powder or crystals in appearance.

60660-58-4

Post Buying Request

60660-58-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

60660-58-4 Usage

Uses

Used in Pharmaceutical Industry:
L-Talitol is used as a laxative for promoting bowel movement and treating constipation. Its laxative effect is attributed to its ability to increase the water content in the intestines, thereby softening the stool and facilitating its passage.
Used in Food and Beverage Industry:
L-Talitol is used as a sugar substitute or additive in the food and beverage industry due to its low caloric value and non-cariogenic properties. It can be utilized in the production of diabetic-friendly and low-calorie products, offering a healthier alternative to traditional sugars.
Used in Cosmetics Industry:
L-Talitol can be used as a humectant in the cosmetics industry, helping to retain moisture in skincare products and providing hydration benefits to the skin. Its ability to draw and maintain water can contribute to the development of moisturizing and nourishing formulations.

Check Digit Verification of cas no

The CAS Registry Mumber 60660-58-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,0,6,6 and 0 respectively; the second part has 2 digits, 5 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 60660-58:
(7*6)+(6*0)+(5*6)+(4*6)+(3*0)+(2*5)+(1*8)=114
114 % 10 = 4
So 60660-58-4 is a valid CAS Registry Number.

60660-58-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name (2S,3S,4R,5S)-hexane-1,2,3,4,5,6-hexol

1.2 Other means of identification

Product number -
Other names L-Talitol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:60660-58-4 SDS

60660-58-4Relevant articles and documents

Strong Metal Phosphide–Phosphate Support Interaction for Enhanced Non-Noble Metal Catalysis

Chen, Zemin,Zeng, Xiang,Li, Xinyu,Lv, Zhenxing,Li, Jiong,Zhang, Ying

, (2021/12/24)

Strong metal-support interaction (SMSI) is crucial for supported catalysts in heterogeneous catalysis. Here is the first report on strong metal phosphide-phosphate support interaction (SMPSI). The key to SMPSI is the activation of P species on the support, which leads to simultaneous generation of metal phosphide nanoparticles (NPs) and core–shell nanostructures formed by support migration onto the NPs. The encapsulation state of metal phosphide and charge transfer are identical to those of classical SMSIs and can be optimally regulated. Furthermore, the strong interactions of Co2PL/MnP-3 not only significantly enhance the anti-oxidation and anti-acid capability of non-noble metal but also exhibit excellent catalytic activity and stability toward hydrogenating a wide range of compounds into value-added fine chemicals with 100% selectivity, which is even better than Pd/C and Pt/C. The SMPSI construction can be generally extended to other systems such as Ni2PL/Mn3(PO4)2, Co2PL/LaPO4, and CoPL/CePO4. This study provides a new approach for the rational design of advanced non-noble metal catalysts and introduce a novel paradigm for the strong interaction between NPs and support.

Direct conversion of cellulose into isosorbide over Ni doped NbOPO4catalysts in water

Guo, Jiaxing,He, Minyao,Li, Cuiqing,Liu, ShanShan,Song, Yongji,Wang, Hong,Wang, Xincheng

supporting information, p. 10292 - 10299 (2020/07/14)

Isosorbide is a versatile chemical intermediate for the production of a variety of drugs, chemicals, and polymers, and its efficient production from natural cellulose is of great significance. In this study, bifunctional catalysts based on niobium phosphates were prepared by a facile hydrothermal method and used for the direct conversion of cellulose to isosorbide under aqueous conditions. NH3-TPD analysis showed that a high acid content existed on the catalyst surface, and pyridine infrared spectroscopic analysis confirmed the presence of both Lewis acid and Br?nsted acid sites, both of which played an important role in the process of carbohydrate conversion. XRD and H2-TPR characterization determined the composition and the hydrogenation centers of the catalyst. An isosorbide yield of 47% could be obtained at 200 °C for 24 h under 3 MPa H2 pressure. The Ni/NbOPO4 bifunctional catalyst retains most of its activity after five consecutive runs with slightly decreased isosorbide yield of 44%. In addition, a possible reaction mechanism was proposed that the synergistic effect of surface acid sites and hydrogenation sites was favorable to enhancing the cascade dehydration and hydrogenation reactions during the conversion of cellulose to isosorbide. This study provides as an efficient strategy for the development of novel multifunctional heterogeneous catalysts for the one-pot valorisation of cellulose. This journal is

Highly efficient catalytic conversion of cellulose into acetol over Ni-Sn supported on nanosilica and the mechanism study

Liu, Xiaohao,Liu, Xiaodong,Xu, Guangyue,Zhang, Ying,Wang, Chenguang,Lu, Qiang,Ma, Longlong

, p. 5647 - 5656 (2019/11/05)

Selective conversion of cellulose into high value-added C3 chemicals is a great challenge in biorefinery due to the complicated reaction process. In this work, 61.6% yield of acetol was obtained by one pot conversion of cellulose using Ni-Sn/SiO2 catalysts. A series of characterization methods including TEM, STEM-HAADF, EDS, AAS, XRD, XPS, H2-TPR, Py-FTIR, and CO2-TPD were carried out to explore the structure-activity relationship. The strong basicity of the catalysts was a key factor affecting the production of acetol. In addition, catalysts with the hydrothermally stable L-acid sites and no B-acid sites inhibited side reactions and ensured efficient conversion of cellulose into small molecules. Further studies showed that the formation of the Ni3Sn4 alloy significantly promoted the acetol production, and its weak hydrogenation activity inhibited further conversion of acetol. Noninteger valence tin species (Snδ+ and SnOx) were formed both in Ni3Sn4 and Sn/SiO2. These Sn species were the source of basic sites and the active sites for catalyzing cellulose to acetol. Under the synergistic catalysis of Sn/SiO2 and the Ni3Sn4 alloy, cellulose was efficiently converted into acetol. This work provides guidance for the selective conversion of cellulose into C3 products.

Role of the Strong Lewis Base Sites on Glucose Hydrogenolysis

Yazdani, Parviz,Wang, Bo,Gao, Feng,Kawi, Sibudjing,Borgna, Armando

, p. 3845 - 3853 (2018/07/31)

This work reports the individual role of strong Lewis base sites on catalytic conversion of glucose hydrogenolysis to acetol/lactic acid, including glucose isomerisation to fructose and pyruvaldehyde rearrangement/hydrogenation to acetol/lactic acid. Las

Hydrothermally Stable Ruthenium–Zirconium–Tungsten Catalyst for Cellulose Hydrogenolysis to Polyols

Lucas, Martin,Fabi?ovicová, Katarina,Claus, Peter

, p. 612 - 618 (2017/12/28)

In this work, we describe a catalytic material based on a zirconium–tungsten oxide with ruthenium for the hydrogenolysis of microcrystalline cellulose under hydrothermal conditions. With these catalysts, polyols can be produced with high yields. High and stable polyol yields were also achieved in recycling tests. A catalyst with 4.5 wt % ruthenium in total achieved a carbon efficiency of almost 100 %. The prepared Zr-W oxide is mesoporous and largely stable under hydrothermal conditions (493 K and 65 bar hydrogen). Decomposition into the components ZrO2 and WO3 could be observed at temperatures of 1050 K in air.

METHOD FOR PRODUCING ISOPROPANOL BY CATALYTIC CONVERSION OF CELLULOSE

-

Page/Page column 14, (2017/07/13)

This invention provides a method for producing isopropanol from cellulose, which is characterized by: cellulose is catalytically converted to isopropanol under existence of a Cu-Cr catalyst. In the method, the Cu-Cr catalyst contains an active phase of CuCr2O4 or further contains an active phase selected from a group consisting of CuO and Cr2O3; the mass ratio of cellulose and water is 15 wt% or below; and the temperature of catalytic reaction is 200-270℃.

Influence of the Surface Chemistry of Multiwalled Carbon Nanotubes on the Selective Conversion of Cellulose into Sorbitol

Ribeiro, Lucília S.,Delgado, Juan J.,de Melo órf?o, José J.,Ribeiro Pereira, M. Fernando

, p. 888 - 896 (2017/03/13)

Carbon nanotubes (CNT) were submitted to liquid-phase chemical treatments using HNO3 and subsequently to gas-phase thermal treatments to incorporate different sets of oxygenated groups on the surface. The modified CNT were used as supports for 0.4 wt % Ru in the direct conversion of ball-milled cellulose to sorbitol and high conversions were reached after 3 h at 205 °C. Ru supported on the original CNT, although less active, was the most selective catalyst for the one-pot process (70 % sorbitol selectivity after 2 h). Unlike the one-pot process, the support acidity greatly promoted the rate of cellulose hydrolysis (35 % increase after 2 h) and the glucose selectivity (12 % increase after 2 h). The rate of glucose hydrogenation was almost not affected by the support modification. However, the catalyst acidity improved the sorbitol selectivity from glucose. The support acidity was a central factor for the one-pot conversion of cellulose, as well as for the individual hydrolysis and hydrogenation steps, and the original CNT supported Ru catalyst was the most efficient and selective catalyst for the direct conversion of cellulose to sorbitol.

One-pot catalytic conversion of cellulose into polyols with Pt/CNTs catalysts

Yang, Li,Yan, Xiaopei,Wang, Qiwu,Wang, Qiong,Xia, Haian

supporting information, p. 87 - 92 (2015/03/05)

A series of Pt nanoparticles supported on carbon nanotubes (CNTs) were synthesized using the incipient-wetness impregnation method. These catalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscope (TEM) techniques. The characterization results indicate that the Pt nanoparticles were highly dispersed on the surface of the CNTs, and the mean size was less than 5 nm. These catalysts were utilized to convert cellulose to hexitol, ethylene glycerol (EG), and 1,2-propylene glycol (1,2-PG) under low H2 pressure. The total yields were as high as 71.4% for EG and 1,2-PG using 1 Pt/CNTs as the catalyst in the hydrolytic hydrogenation of cellulose under mild reaction conditions.

Effect of WOx on Bifunctional Pd-WOx/Al2O3 Catalysts for the Selective Hydrogenolysis of Glucose to 1,2-Propanediol

Liu, Chengwei,Zhang, Chenghua,Sun, Sikai,Liu, Kangkai,Hao, Shunli,Xu, Jian,Zhu, Yulei,Li, Yongwang

, p. 4612 - 4623 (2015/08/18)

A series of Pd-WOx/Al2O3 catalysts with different contents of WOx were prepared by stepwise incipient wetness impregnations. The influence of WOx on the physicochemical properties of Pd-WOx/Al2O3 catalysts, as well as their catalytic performance for the hydrogenolysis of glucose to 1,2-propanediol (1,2-PDO), was investigated. At low surface W density (0.3-2.1 W nm-2), distorted isolated WOx and oligomeric WOx are present on the Pd-WOx/Al2O3 catalysts. Furthermore, isolated WO4 are the dominating species on the Pd-WOx(5%)/Al2O3 catalyst. When the W density increased to 3.1 W nm-2, polymeric WOx species are dominant on the Pd-WOx(30%)/Al2O3 catalyst. The Pd surface area decreased while the acid amount increased with increasing W density. Furthermore, increased Lewis acid sites are provided by isolated WO4 and oligomeric WOx species whereas increased Bronsted acid sites exist on polymeric WOx species. Lewis acid sites promote glucose isomerization to fructose, which is an intermediate in glucose hydrogenolysis to 1,2-PDO. Metal sites catalyze C=O hydrogenation and C-C hydrogenolysis, which avoid the coke formation on catalysts. 1,2-PDO selectivity is dependent on the synergy of Lewis acid and metal sites; however, Bronsted acid sites have no contribution to the 1,2-PDO production. Typically, the Pd-WOx(5%)/Al2O3 catalyst possessing the optimal balance of Lewis acid and the metal site shows a 1,2-PDO selectivity of 60.8% at a glucose conversion of 92.2% and has a lifetime of over 200 h.

Aqueous phase hydrogenolysis of glucose to 1,2-propanediol over copper catalysts supported by sulfated spherical carbon

Liang, Dong,Liu, Chengwei,Deng, Shuping,Zhu, Yulei,Lv, Chunxiang

, p. 108 - 113 (2014/07/08)

Aqueous phase hydrogenolysis of glucose was carried out over copper catalysts supported by sulfated spherical carbon for selective production of 1,2-propanediol. The sulfated carbon shows higher acidity by sulfation of its resin precursor than unsulfated or commercial ones. By changing copper loading, the hydrogenolysis capability and the acidity of catalysts were modified to suitable extents, which can optimize the selectivity to 1,2-propanediol. At a moderate copper loading, 5.0Cu/s-AC catalyst has the highest yield of 1,2-propanediol. This catalyst has a lifetime of over 300 h. However, its stability is required to be further improved.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 60660-58-4