617-90-3Relevant articles and documents
Preparation of Fluorescent Materials from Biomass-Derived Furfural and Natural Amino Acid Cysteine through Cross-Coupling Reactions for Extended π-Conjugation
Tanaka, Shota,Ashida, Kana,Tatsuta, Go,Mori, Atsunori
, p. 1496 - 1500 (2015)
Preparation of 2-furylthiazole-4-carboxylic acid methyl ester is achieved in four steps from biomass-derived heteroaromatic compound furfural and a natural amino acid l-cysteine. One-pot bromination and following palladium-catalyzed arylation with arylboronates of the thus obtained furylthiazole at the furan ring gives arylated furylthiazole in excellent yields. Further arylation at the C-H bond of the thiazole ring (5-position) in the presence of AgF as an additive leads to diaarylated furylthiazoles, which show strong photoluminescence. Homocoupling at the C-H bond of thiazole is also carried out with AgF to afford the corresponding further conjugated product composed of eight (hetero)aromatic rings.
Product selectivity controlled by manganese oxide crystals in catalytic ammoxidation
Hui, Yu,Luo, Qingsong,Qin, Yucai,Song, Lijuan,Wang, Hai,Wang, Liang,Xiao, Feng-Shou
, p. 2164 - 2172 (2021/09/20)
The performances of heterogeneous catalysts can be effectively tuned by changing the catalyst structures. Here we report a controllable nitrile synthesis from alcohol ammoxidation, where the nitrile hydration side reaction could be efficiently prevented by changing the manganese oxide catalysts. α-Mn2O3 based catalysts are highly selective for nitrile synthesis, but MnO2-based catalysts including α, β, γ, and δ phases favour the amide production from tandem ammoxidation and hydration steps. Multiple structural, kinetic, and spectroscopic investigations reveal that water decomposition is hindered on α-Mn2O3, thus to switch off the nitrile hydration. In addition, the selectivity-control feature of manganese oxide catalysts is mainly related to their crystalline nature rather than oxide morphology, although the morphological issue is usually regarded as a crucial factor in many reactions.
A Molecular Iron-Based System for Divergent Bond Activation: Controlling the Reactivity of Aldehydes
Chatterjee, Basujit,Jena, Soumyashree,Chugh, Vishal,Weyhermüller, Thomas,Werlé, Christophe
, p. 7176 - 7185 (2021/06/30)
The direct synthesis of amides and nitriles from readily available aldehyde precursors provides access to functional groups of major synthetic utility. To date, most reliable catalytic methods have typically been optimized to supply one product exclusively. Herein, we describe an approach centered on an operationally simple iron-based system that, depending on the reaction conditions, selectively addresses either the C=O or C-H bond of aldehydes. This way, two divergent reaction pathways can be opened to furnish both products in high yields and selectivities under mild reaction conditions. The catalyst system takes advantage of iron's dual reactivity capable of acting as (1) a Lewis acid and (2) a nitrene transfer platform to govern the aldehyde building block. The present transformation offers a rare control over the selectivity on the basis of the iron system's ionic nature. This approach expands the repertoire of protocols for amide and nitrile synthesis and shows that fine adjustments of the catalyst system's molecular environment can supply control over bond activation processes, thus providing easy access to various products from primary building blocks.
Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,N-tri-Doped Hierarchically Porous Carbon Nanosheets
Hua, Manli,Song, Jinliang,Huang, Xin,Liu, Huizhen,Fan, Honglei,Wang, Weitao,He, Zhenhong,Liu, Zhaotie,Han, Buxing
supporting information, p. 21479 - 21485 (2021/08/23)
Oxidative cyanation of aldehydes provides a promising strategy for the cyanide-free synthesis of organic nitriles. Design of robust and cost-effective catalysts is the key for this route. Herein, we designed a series of Se,S,N-tri-doped carbon nanosheets with a hierarchical porous structure (denoted as Se,S,N-CNs-x, x represents the pyrolysis temperature). It was found that the obtained Se,S,N-CNs-1000 was very selective and efficient for oxidative cyanation of various aldehydes including those containing other oxidizable groups into the corresponding nitriles using ammonia as the nitrogen resource below 100 °C. Detailed investigations revealed that the excellent performance of Se,S,N-CNs-1000 originated mainly from the graphitic-N species with lower electron density and synergistic effect between the Se, S, N, and C in the catalyst. Besides, the hierarchically porous structure could also promote the reaction. Notably, the unique feature of this metal-free catalyst is that it tolerated other oxidizable groups, and showed no activity on further reaction of the products, thereby resulting in high selectivity. As far as we know, this is the first work for the synthesis of nitriles via oxidative cyanation of aldehydes over heterogeneous metal-free catalysts.
CuO-catalyzed conversion of arylacetic acids into aromatic nitriles with K4Fe(CN)6 as the nitrogen source
Ren, Yun-Lai,Shen, Zhenpeng,Tian, Xinzhe,Xing, Ai-Ping,Zhao, Zhe
, (2020/10/26)
Readily available CuO was demonstrated to be effective as the catalyst for the conversion of arylacetic acids to aromatic nitriles with non-toxic and inexpensive K4Fe(CN)6 as the nitrogen source via the complete cleavage of the C[tbnd]N triple bond. The present method allowed a series of arylacetic acids including phenylacetic acids, naphthaleneacetic acids, 2-thiopheneacetic acid and 2-furanacetic acid to be converted into the targeted products in low to high yields.
Earth-Abundant Bimetallic Nanoparticle Catalysts for Aerobic Ammoxidation of Alcohols to Nitriles
Kobayashi, Shu,Yang, Xi,Yasukawa, Tomohiro
, p. 7543 - 7548 (2020/06/27)
Heterogeneous nitrogen-doped carbon-incarcerated iron/copper bimetallic nanoparticle (NP) catalysts prepared from nitrogen-containing polymers were developed. These catalysts showed activity higher than that of the corresponding monometallic NPs for aerobic ammoxidation of alcohols to nitriles. The important procedure for high activity in the catalyst preparation was found to be a simultaneous reduction of two metal salts.
Aerobic oxidation of primary benzylic amines to amides and nitriles catalyzed by ruthenium carbonyl clusters carrying N,O-bidentate ligands
Dong, Qing,Han, Zhangang,Hao, Zhiqiang,Li, Ying,Lin, Jin,Lu, Guo-Liang,Meng, Lizhen,Yan, Xinlong
, p. 3480 - 3487 (2020/04/02)
Four trinuclear ruthenium carbonyl clusters, (6-BrPyCHRO)2Ru3(CO)8 (R = 4-OCH3C6H4, 1a; R = 4-BrC6H4, 1b) and (2-OC6H4-HCN-C6H4R)2Ru3(CO)8 (R = 4-OCH3, 2a; R = 4-Br, 2b), were synthesized from the reactions of Ru3(CO)12 with the corresponding N,O-bidentate ligands (two pyridyl alcohols and two Schiff bases) respectively in a ratio of 1:2. Three new complexes 1b, 2a and 2b have been fully characterized by elemental analysis, FT-IR, NMR and X-ray crystallography. The catalytic activity of these ruthenium complexes for the aerobic oxidation of primary benzylic amines to amides and nitriles in the presence of t-BuOK was investigated, of which the Schiff base complex 2a was found to exhibit the highest activity.
Acceptorless dehydrogenation of amines to nitriles catalyzed by N-heterocyclic carbene-nitrogen-phosphine chelated bimetallic ruthenium (II) complex
Chen, Hua,Fu, Haiyan,Ji, Li,Li, Ruixiang,Nie, Xufeng,Zheng, Yanling
, p. 378 - 385 (2020/10/02)
We have developed a clean, atom-economical and environmentally friendly route for acceptorless dehydrogenation of amines to nitriles by combining a new dual N-heterocyclic carbene-nitrogen-phosphine ligand R(CNP)2 (R = o-xylyl) with a ruthenium precursor [RuCl2(η6-C6H6)]2. In this system, the electronic and steric factors of amines had a negligible influence on the reaction and a broad range of functional groups were well tolerated. All of the investigated amines could be converted to nitriles in good yield of up to 99% with excellent selectivity. The unprecedented catalytic performance of this system is attributed to the synergistic effect of two ruthenium centers chelated by R(CNP)2 and a plausible reaction mechanism is proposed according to the active species found via in situ NMR and HRMS.
Integrating Biomass into the Organonitrogen Chemical Supply Chain: Production of Pyrrole and d-Proline from Furfural
Di, Lu,Fung Kin Yuen, Vincent,Song, Song,Sun, Qiming,Yan, Ning,Zhou, Kang
supporting information, p. 19846 - 19850 (2020/09/02)
Production of renewable, high-value N-containing chemicals from lignocellulose will expand product diversity and increase the economic competitiveness of the biorefinery. Herein, we report a single-step conversion of furfural to pyrrole in 75 % yield as a key N-containing building block, achieved via tandem decarbonylation–amination reactions over tailor-designed Pd?S-1 and H-beta zeolite catalytic system. Pyrrole was further transformed into dl-proline in two steps following carboxylation with CO2 and hydrogenation over Rh/C catalyst. After treating with Escherichia coli, valuable d-proline was obtained in theoretically maximum yield (50 %) bearing 99 % ee. The report here establishes a route bridging commercial commodity feedstock from biomass with high-value organonitrogen chemicals through pyrrole as a hub molecule.
Iron-Promoted Decarboxylation of Arylacetic Acids for the Synthesis of Aromatic Nitriles with Sodium Nitrite as the Nitrogen Source
Shen, Zhenpeng,Liu, Wenbo,Tian, Xinzhe,Zhao, Zhe,Ren, Yun-Lai
supporting information, p. 1805 - 1808 (2020/11/02)
A new and effective method was developed for the synthesis of aromatic nitriles from arylacetic acids by using NaNO 2as the nitrogen source and Fe(OTf) 3as the promoter at 50 °C. A series of arylacetic acids underwent this transformation to give the targeted products in yields of 51-90%. Because of the mild conditions, the reaction is compatible with a broad range of functional groups, including ester, carboxy, hydroxy, acetamido, halo, nitro, cyano, methoxy, and even highly reactive formyl groups.