623-03-0Relevant articles and documents
Nitrile Synthesis via Desulfonylative-Smiles Rearrangement
Abe, Masahiro,Nitta, Sayasa,Miura, Erina,Kimachi, Tetsutaro,Inamoto, Kiyofumi
, p. 4460 - 4467 (2022/03/15)
Herein, we designed a simple nitrile synthesis from N-[(2-nitrophenyl)sulfonyl]benzamides via base-promoted intramolecular nucleophilic aromatic substitution. The process features redox-neutral conditions as well as no requirement of toxic cyanide species and transition metals. Our process shows broad scope and various functional group compatibility, affording a variety of (hetero)aromatic nitriles in good to excellent yields.
A new reagent for efficient synthesis of nitriles from aldoximes using methoxymethyl bromide
ULUDAG, Nesimi,GIDEN, Ozge NUR
, p. 993 - 998 (2021/02/05)
This study outlines an efficient, high-yielding, and rapid method by which to access diverse nitriles from aldoximes with methoxymethyl bromide (MOM-Br) in THF. It represents the first application of MOM-Br as a deoximation reagent to synthesize nitriles. The reaction was performed at reflux to ensure excellent yield (79-96%) of the nitriles within 20-45 minutes. Furthermore, this method has been successfully applied to the synthesis of the synthesis precursor of aromatic, heteroaromatic, cyclic, and acyclic aliphatic.
Bis-morpholinophosphorylchloride, a novel reagent for the conversion of primary amides into nitriles
Rao, P. Purnachandra,Nowshuddin, Shaik,Jha, Anjali,Rao, B. Leela Maheswara,Divi, Murali K.,Rao
supporting information, (2021/01/21)
Bis-morpholinophosphorylchloride (Bmpc), in the presence of a base, is an efficient dehydrating agent for both aromatic and aliphatic primary amides, and gives corresponding nitriles under mild conditions in god yields and purity. During the reaction the enantiomeric integrity remains intact.
Method for dehydrating primary amide into nitriles under catalysis of cobalt
-
Paragraph 0060-0062, (2021/06/21)
The invention provides a method for dehydrating primary amide into nitrile. The method comprises the following steps: mixing primary amide (II), silane, sodium triethylborohydride, aminopyridine imine tridentate nitrogen ligand cobalt complex (I) and a reaction solvent under the protection of inert gas, carrying out reacting at 60-100 DEG C for 6-24 hours, and post-treating reaction liquid to obtain a nitrile compound (III). According to the invention, an effective method for preparing nitrile compounds by cobalt-catalyzed primary amide dehydration reaction by using the novel aminopyridine imine tridentate nitrogen ligand cobalt complex catalyst is provided; and compared with existing methods, the method has the advantages of simple operation, mild reaction conditions, wide application range of reaction substrates, high selectivity, stable catalyst, high efficiency, and relatively high practical application value in synthesis.
Visible-Light-Promoted Metal-Free Synthesis of (Hetero)Aromatic Nitriles from C(sp3)?H Bonds**
Murugesan, Kathiravan,Donabauer, Karsten,K?nig, Burkhard
supporting information, p. 2439 - 2445 (2020/12/07)
The metal-free activation of C(sp3)?H bonds to value-added products is of paramount importance in organic synthesis. We report the use of the commercially available organic dye 2,4,6-triphenylpyrylium tetrafluoroborate (TPP) for the conversion of methylarenes to the corresponding aryl nitriles via a photocatalytic process. Applying this methodology, a variety of cyanobenzenes have been synthesized in good to excellent yield under metal- and cyanide-free conditions. We demonstrate the scope of the method with over 50 examples including late-stage functionalization of drug molecules (celecoxib) and complex structures such as l-menthol, amino acids, and cholesterol derivatives. Furthermore, the presented synthetic protocol is applicable for gram-scale reactions. In addition to methylarenes, selected examples for the cyanation of aldehydes, alcohols and oximes are demonstrated as well. Detailed mechanistic investigations have been carried out using time-resolved luminescence quenching studies, control experiments, and NMR spectroscopy as well as kinetic studies, all supporting the proposed catalytic cycle.
METHOD FOR PRODUCING AROMATIC NITRILE COMPOUND AND CATALYST FOR SYNTHESIS OF AROMATIC NITRILE COMPOUND
-
Paragraph 0053-0065; 0099-0104, (2021/05/07)
PROBLEM TO BE SOLVED: To efficiently produce an aromatic nitrile compound by oxidizing a methyl group directly bonded to an aromatic ring into a cyano group by ammoxidation. SOLUTION: The present invention relates to a method for producing an aromatic nitrile compound wherein a zeolite carrying at least one selected from the group consisting of an alkali metal and an alkaline earth metal is used to, in the presence of ammonia, oxidize an aromatic compound having a methyl group bound to a carbon atom of an aromatic ring with oxygen. SELECTED DRAWING: Figure 2 COPYRIGHT: (C)2021,JPOandINPIT
Unprecedented Catalysis of Cs+Single Sites Confined in y Zeolite Pores for Selective Csp3-H Bond Ammoxidation: Transformation of Inactive Cs+Ions with a Noble Gas Electronic Structure to Active Cs+Single Sites
Acharyya, Shankha S.,Ghosh, Shilpi,Iwasawa, Yasuhiro,Kaneko, Takuma,Sasaki, Takehiko,Yoshida, Yusuke
, p. 6698 - 6708 (2021/06/25)
We report the transformation of Cs+ ions with an inactive noble gas electronic structure to active Cs+ single sites chemically confined in Y zeolite pores (Cs+/Y), which provides an unprecedented catalysis for oxidative cyanation (ammoxidation) of Csp3-H bonds with O2 and NH3, although in general, alkali and alkaline earth metal ions without a moderate redox property cannot activate Csp3-H bonds. The Cs+/Y catalyst was proved to be highly efficient in the synthesis of aromatic nitriles with yields >90% in the selective ammoxidation of toluene and its derivatives as test reactions. The mechanisms for the genesis of active Cs+ single sites and the ammoxidation pathway of Csp3-H bonds were rationalized by density functional theory (DFT) simulations. The chemical confinement of large-sized Cs+ ions with the pore architecture of a Y zeolite supercage rendered the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap reduction, HOMO component change, and preferable coordination arrangement for the selective reaction promotion, which provides a trimolecular assembly platform to enable the coordination-promoted concerted ammoxidation pathway working closely on each Cs+ single site. The new reaction pathway without involvement of O2-dissociated O atom and lattice oxygen differs from the traditional redox catalysis mechanisms for the selective ammoxidation.
SO2F2-mediated oxidation of primary and tertiary amines with 30% aqueous H2O2 solution
Liao, Xudong,Zhou, Yi,Ai, Chengmei,Ye, Cuijiao,Chen, Guanghui,Yan, Zhaohua,Lin, Sen
supporting information, (2021/11/01)
A highly efficient and selective oxidation of primary and tertiary amines employing SO2F2/H2O2/base system was described. Anilines were converted to the corresponding azoxybenzenes, while primary benzylamines were transformed into nitriles and secondary benzylamines were rearranged to amides. For tertiary amine substrates quinolines, isoquinolines and pyridines, their oxidation products were the corresponding N-oxides. The reaction conditions are very mild and just involve SO2F2, amines, 30% aqueous H2O2 solution, and inorganic base at room temperature. One unique advantage is that this oxidation system is just composed of inexpensive inorganic compounds without the use of any metal and organic compounds.
Method for catalyzing oxidation of amines to generate nitrile by using nonmetal mesoporous nitrogen-doped carbon material
-
Paragraph 0019; 0029, (2021/05/08)
The invention discloses a method for preparing nitrile by catalyzing amine oxidation with a non-metal mesoporous nitrogen-doped carbon material catalyst, which is applied to the field of synthesis, the material is prepared by using a nitrogen-containing organic ligand as a precursor and silica sol as a template agent, calcining in the atmosphere of inert gases such as N2 or Ar and then removing the template agent; oxygen or air is used as an oxygen source, the reaction is performed at 80-130 DEG C under the action of ammonia water in the presence of a solvent, the effect is good, and the product still keeps higher activity after being recycled for more than 8 times, and has a wide industrial application prospect. The invention provides a heterogeneous non-metal catalytic system for catalyzing amine oxidation to prepare nitrile for the first time, and compared with a reported metal catalyst, the heterogeneous non-metal catalytic system does not bring metal pollution to a product to influence the effect of cyano drugs.
Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,N-tri-Doped Hierarchically Porous Carbon Nanosheets
Hua, Manli,Song, Jinliang,Huang, Xin,Liu, Huizhen,Fan, Honglei,Wang, Weitao,He, Zhenhong,Liu, Zhaotie,Han, Buxing
supporting information, p. 21479 - 21485 (2021/08/23)
Oxidative cyanation of aldehydes provides a promising strategy for the cyanide-free synthesis of organic nitriles. Design of robust and cost-effective catalysts is the key for this route. Herein, we designed a series of Se,S,N-tri-doped carbon nanosheets with a hierarchical porous structure (denoted as Se,S,N-CNs-x, x represents the pyrolysis temperature). It was found that the obtained Se,S,N-CNs-1000 was very selective and efficient for oxidative cyanation of various aldehydes including those containing other oxidizable groups into the corresponding nitriles using ammonia as the nitrogen resource below 100 °C. Detailed investigations revealed that the excellent performance of Se,S,N-CNs-1000 originated mainly from the graphitic-N species with lower electron density and synergistic effect between the Se, S, N, and C in the catalyst. Besides, the hierarchically porous structure could also promote the reaction. Notably, the unique feature of this metal-free catalyst is that it tolerated other oxidizable groups, and showed no activity on further reaction of the products, thereby resulting in high selectivity. As far as we know, this is the first work for the synthesis of nitriles via oxidative cyanation of aldehydes over heterogeneous metal-free catalysts.