619-64-7Relevant articles and documents
Photoredox-Catalyzed Simultaneous Olefin Hydrogenation and Alcohol Oxidation over Crystalline Porous Polymeric Carbon Nitride
Qiu, Chuntian,Sun, Yangyang,Xu, Yangsen,Zhang, Bing,Zhang, Xu,Yu, Lei,Su, Chenliang
, p. 3344 - 3350 (2021/07/26)
Booming of photocatalytic water splitting technology (PWST) opens a new avenue for the sustainable synthesis of high-value-added hydrogenated and oxidized fine chemicals, in which the design of efficient semiconductors for the in-situ and synergistic utilization of photogenerated redox centers are key roles. Herein, a porous polymeric carbon nitride (PPCN) with a crystalline backbone was constructed for visible light-induced photocatalytic hydrogen generation by photoexcited electrons, followed by in-situ utilization for olefin hydrogenation. Simultaneously, various alcohols were selectively transformed to valuable aldehydes or ketones by photoexcited holes. The porosity of PPCN provided it with a large surface area and a short transfer path for photogenerated carriers from the bulk to the surface, and the crystalline structure facilitated photogenerated charge transfer and separation, thus enhancing the overall photocatalytic performance. High reactivity and selectivity, good functionality tolerance, and broad reaction scope were achieved by this concerted photocatalysis system. The results contribute to the development of highly efficient semiconductor photocatalysts and synergistic redox reaction systems based on PWST for high-value-added fine chemical production.
Oxidative carbon-carbon bond cleavage of 1,2-diols to carboxylic acids/ketones by an inorganic-ligand supported iron catalyst
Chen, Weiming,Xie, Xin,Zhang, Jian,Qu, Jian,Luo, Can,Lai, Yaozhu,Jiang, Feng,Yu, Han,Wei, Yongge
supporting information, p. 9140 - 9146 (2021/11/23)
The carbon-carbon bond cleavage of 1,2-diols is an important chemical transformation. Although traditional stoichiometric and catalytic oxidation methods have been widely used for this transformation, an efficient and valuable method should be further explored from the views of reusable catalysts, less waste, and convenient procedures. Herein an inorganic-ligand supported iron catalyst (NH4)3[FeMo6O18(OH)6]·7H2O was described as a heterogeneous molecular catalyst in acetic acid for this transformation in which hydrogen peroxide was used as the terminal oxidant. Under the optimized reaction conditions, carbon-carbon bond cleavage of 1,2-diols could be achieved in almost all cases and carboxylic acids or ketones could be afforded with a high conversion rate and high selectivity. Furthermore, the catalytic system was used efficiently to degrade renewable biomass oleic acid. Mechanistic insights based on the observation of the possible intermediates and control experiments are presented.
Carboxylation of sodium arylsulfinates with CO2over mesoporous K-Cu-20TiO2
Chen, Lei,Chen, Yanjiao,Dai, Xuan,Peng, Xinhua,Wu, Tao,Zhang, Wenwei
, p. 772 - 776 (2022/01/22)
A mesoporous ternary metal oxide (K-Cu-20TiO2) from a simple sol-gel method was prepared to catalyze heterogeneously the carboxylation reaction of various sodium arylsulfinates under atmospheric carbon dioxide. The catalyst showed excellent selectivity and good functional group tolerance to carboxylation recycle. The oxidation state of active copper(i) by characterization using FTIR, XRD, TG, XPS and TEM techniques proved to be efficacious to conduct atom economical reactions.
Synthesis method of 4-ethylbenzoic acid
-
Paragraph 0007; 0018-0033, (2020/05/11)
The invention relates to the field of chemical synthesis, in particular to a synthesis method of 4-ethylbenzoic acid. The synthesis method comprises the following steps: mixing 4-ethylacetophenone with a ketone catalyst, dropwise adding an aqueous solution of sodium hypochlorite, carrying out heating, keeping a temperature, carrying out standing for liquid separation, and carrying out acidity regulation on a water phase. The method is short in reaction period, high in yield (which can reach 96.4%), high in product content (which can reach 97.4%), excellent in product quality, simple to operateand low in energy consumption.
Hydrogenation reaction method
-
Paragraph 0034; 0065-0068, (2020/05/14)
The invention relates to a hydrogenation reaction method, and belongs to the technical field of organic synthesis. The hydrogenation reaction method provided by the invention comprises the following steps: carrying out a hydrogen transfer reaction on a hydrogen acceptor compound, pinacol borane and a catalyst in a solvent in the presence of proton hydrogen, so that the hydrogen acceptor compound is subjected to a hydrogenation reaction; the catalyst is one or more than two of a palladium catalyst, an iridium catalyst and a rhodium catalyst; the hydrogen acceptor compound comprises one or morethan two functional groups of carbon-carbon double bonds, carbon-carbon triple bonds, carbon-oxygen double bonds, carbon-nitrogen double bonds, nitrogen-nitrogen double bonds, nitryl, carbon-nitrogentriple bonds and epoxy. The method is mild in reaction condition, easy to operate, high in yield, short in reaction time, wide in substrate application range, suitable for carbon-carbon double bonds,carbon-carbon triple bonds, carbon-oxygen double bonds, carbon-nitrogen double bonds, nitrogen-nitrogen double bonds, nitryl, carbon-nitrogen triple bonds and epoxy functional groups, good in selectivity and high in reaction specificity.
Generalized Chemoselective Transfer Hydrogenation/Hydrodeuteration
Wang, Yong,Cao, Xinyi,Zhao, Leyao,Pi, Chao,Ji, Jingfei,Cui, Xiuling,Wu, Yangjie
supporting information, p. 4119 - 4129 (2020/08/10)
A generalized, simple and efficient transfer hydrogenation of unsaturated bonds has been developed using HBPin and various proton reagents as hydrogen sources. The substrates, including alkenes, alkynes, aromatic heterocycles, aldehydes, ketones, imines, azo, nitro, epoxy and nitrile compounds, are all applied to this catalytic system. Various groups, which cannot survive under the Pd/C/H2 combination, are tolerated. The activity of the reactants was studied and the trends are as follows: styrene'diphenylmethanimine'benzaldehyde'azobenzene'nitrobenzene'quinoline'acetophenone'benzonitrile. Substrates bearing two or more different unsaturated bonds were also investigated and transfer hydrogenation occurred with excellent chemoselectivity. Nano-palladium catalyst in situ generated from Pd(OAc)2 and HBPin extremely improved the TH efficiency. Furthermore, chemoselective anti-Markovnikov hydrodeuteration of terminal aromatic olefins was achieved using D2O and HBPin via in situ HD generation and discrimination. (Figure presented.).
A Zn(II)-Coordination Polymer for the Instantaneous Cleavage of Csp3-Csp3 Bond and Simultaneous Reduction of Ketone to Alcohol
Das, Gourab Kanti,Dey, Biswajit,Dhibar, Subhendu,Ghosh, Debasish,Gupta, Vivek K.
, (2020/04/10)
Two coordination polymers of Zn(II) and Cu(II) with n-butylmalonic acid have been achieved in this work. The crystallographic structural descriptions along with the sedimentary rock-type microstructural morphology of these two coordination polymers (CPs) have been explored. The reactivity of β-hydroxy ketones with these two CPs has also been investigated. The Zn(II)-CP shows a specific reactivity with β-hydroxy ketone at room temperature and in open air conditions. Through a microcolumn-based filtration technique, the Zn(II)-CP shows the capability to break the Csp3-Csp3 σ bonds of β-hydroxy ketone and simultaneously reduce the associated ketone to alcohol. Such conversion has been progressed without the use of any additional external reducing agent and any chemical workup or column chromatographic purification protocol. Other similar type CPs of Cu(II) and Mn(II) with n-butylmalonic acid completely failed to show similar reactivity with β-hydroxy ketone. On the basis of much experimental evidence, the most possible mechanistic pathway of the reactivity between β-hydroxy ketone and Zn(II)-CP has also been proposed through this work.
Palladium-catalyzed carbonylative synthesis of acylstannanes from aryl iodides and hexamethyldistannane
Chen, Bo,Franke, Robert,Wu, Xiao-Feng,Xu, Jian-Xing,Yuan, Yang
, (2020/07/21)
In this communication, we describe a new method for the carbonylative synthesis of acylstannanes from aryl iodides and hexamethyldistannane. With Pd(PPh3)4 as the catalyst and toluene as the solvent at 60 °C under 10 bar CO for 16 h, the desired acylstannanes were obtained in good to excellent yields. In order to facilitate isolation and analysis, the obtained acylstannanes were transformed into the corresponding benzoic acids by simply stirring under air for 5 h.
N-Doped carbon nanofibers derived from bacterial cellulose as an excellent metal-free catalyst for selective oxidation of arylalkanes
Huang, Runkun,Cao, Changyan,Liu, Jian,Sun, Dongping,Song, Weiguo
supporting information, p. 1935 - 1938 (2019/05/02)
N-Doped carbon nanofibers derived from one-step pyrolysis of low-cost bacterial cellulose with the assistance of urea were reported. Owing to their interconnected nanofibrous structure and high specific surface area as well as high N doping, they exhibited excellent catalytic performance for selective oxidation of arylalkanes even with O2 as an oxidant in aqueous solution.
Selective oxidation method for toluene compounds
-
Paragraph 0112; 0113, (2019/12/25)
The invention discloses a selective oxidation method for toluene compounds. The method comprises the following steps: 1, putting a toluene compound represented by a formula (I) shown in the specification, a metalloporphyrin catalyst, an oxidant and a dispersing agent into a ball milling tank, sealing the ball milling tank, carrying out ball milling for 3-24 hours at room temperature and the rotating speed of 100-800 rpm, stopping ball milling once every 1-3 hours in the ball milling process, discharging gas in the ball milling tank, and after the reaction is finished, carrying out post-treatment on the reaction mixture to obtain a product benzoic acid compound represented by a formula (II) shown in the specification. Oxidation conversion of methylbenzene and derivatives thereof is achievedthrough solid-phase ball milling, the reaction mode is novel, the operation is convenient, and the energy consumption is low; an organic solvent and other auxiliaries are not needed, so that use of toxic and harmful organic reagents is effectively avoided, and the method is green and environmentally friendly; the peroxide content is low, and the safety coefficient is high; and benzoic acid and derivatives thereof have high selectivity and meet the social requirements of a green chemical process, an environmental compatibility chemical process and a biological compatibility chemical process inthe prior art.