942-92-7Relevant articles and documents
Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene
Goettmann, Frederic,Fischer, Anna,Antonietti, Markus,Thomas, Arne
, p. 4467 - 4471 (2006)
(Figure Presented) In the footsteps of Liebig and Berzelius: A material first synthesized in 1834, carbon nitride (C3N4), was synthesized in a graphitic mesoporous form by using silica nanoparticles as templates. The resulting electron-rich solid is an active catalyst for the Friedel-Crafts acylation of benzene with hexanoyl chloride. Presumably the catalysis arises from a shift of electron density from the MOs of the catalyst to the unoccupied orbitals of benzene (see picture).
Rh-Catalyzed Coupling of Aldehydes with Allylboronates Enables Facile Access to Ketones
Zhang, Kezhuo,Huang, Jiaxin,Zhao, Wanxiang
supporting information, (2022/02/21)
We present herein a novel strategy for the preparation of ketones from aldehydes and allylic boronic esters. This reaction involves the allylation of aldehydes with allylic boronic esters and the Rh-catalyzed chain-walking of homoallylic alcohols. The key to this successful development is the protodeboronation of alkenyl borylether intermediate via a tetravalent borate anion species in the presence of KHF2 and MeOH. This approach features mild reaction conditions, broad substrate scope, and excellent functional group tolerance. Mechanistic studies also supported that the tandem allylation and chain-walking process were involved.
Nickel-Mediated Photoreductive Cross Coupling of Carboxylic Acid Derivatives for Ketone Synthesis**
Brauer, Jan,Quraishi, Elisabeth,Kammer, Lisa Marie,Opatz, Till
supporting information, p. 18168 - 18174 (2021/11/30)
A simple visible light photochemical, nickel-catalyzed synthesis of ketones from carboxylic acid-derived precursors is presented. Hantzsch ester (HE) functions as a cheap, green and strong photoreductant to facilitate radical generation and also engages in the Ni-catalytic cycle to restore the reactive species. With this dual role, HE allows for the coupling of a large variety of radicals (1°,2°, benzylic, α-oxy & α-amino) with aroyl and alkanoyl moieties, a new feature in reactions of this type. With both precursors deriving from abundant carboxylic acids, this protocol is a welcome addition to the organic chemistry toolbox. The reaction proceeds under mild conditions without the need for toxic metal reagents or bases and shows a wide scope, including pharmaceuticals and complex molecular architectures.
A Proton-Responsive Pyridyl(benzamide)-Functionalized NHC Ligand on Ir Complex for Alkylation of Ketones and Secondary Alcohols
Kaur, Mandeep,U Din Reshi, Noor,Patra, Kamaless,Bhattacherya, Arindom,Kunnikuruvan, Sooraj,Bera, Jitendra K.
supporting information, p. 10737 - 10748 (2021/06/15)
A Cp*Ir(III) complex (1) of a newly designed ligand L1 featuring a proton-responsive pyridyl(benzamide) appended on N-heterocyclic carbene (NHC) has been synthesized. The molecular structure of 1 reveals a dearomatized form of the ligand. The protonation of 1 with HBF4 in tetrahydrofuran gives the corresponding aromatized complex [Cp*Ir(L1H)Cl]BF4 (2). Both compounds are characterized spectroscopically and by X-ray crystallography. The protonation of 1 with acid is examined by 1H NMR and UV-vis spectra. The proton-responsive character of 1 is exploited for catalyzing α-alkylation of ketones and β-alkylation of secondary alcohols using primary alcohols as alkylating agents through hydrogen-borrowing methodology. Compound 1 is an effective catalyst for these reactions and exhibits a superior activity in comparison to a structurally similar iridium complex [Cp*Ir(L2)Cl]PF6 (3) lacking a proton-responsive pendant amide moiety. The catalytic alkylation is characterized by a wide substrate scope, low catalyst and base loadings, and a short reaction time. The catalytic efficacy of 1 is also demonstrated for the syntheses of quinoline and lactone derivatives via acceptorless dehydrogenation, and selective alkylation of two steroids, pregnenolone and testosterone. Detailed mechanistic investigations and DFT calculations substantiate the role of the proton-responsive ligand in the hydrogen-borrowing process.
Metal- And additive-free C-H oxygenation of alkylarenes by visible-light photoredox catalysis
García Manche?o, Olga,Kuhlmann, Jan H.,Pérez-Aguilar, María Carmen,Piekarski, Dariusz G.,Uygur, Mustafa
supporting information, p. 3392 - 3399 (2021/05/21)
A metal- and additive-free methodology for the highly selective, photocatalyzed C-H oxygenation of alkylarenes under air to the corresponding carbonyls is presented. The process is catalyzed by an imide-acridinium that forms an extremely strong photooxidant upon visible light irradiation, which is able to activate inert alkylarenes such as toluene. Hence, this is an easy to perform, sustainable and environmentally friendly oxidation that provides valuable carbonyls from abundant, readily available compounds.
Selective catalytic synthesis of α-alkylated ketones and β-disubstituted ketones via acceptorless dehydrogenative cross-coupling of alcohols
Bhattacharyya, Dipanjan,Sarmah, Bikash Kumar,Nandi, Sekhar,Srivastava, Hemant Kumar,Das, Animesh
supporting information, p. 869 - 875 (2021/02/06)
Herein, a phosphine-free pincer ruthenium(III) catalyzed β-alkylation of secondary alcohols with primary alcohols to α-alkylated ketones and two different secondary alcohols to β-branched ketones are reported. Notably, this transformation is environmentally benign and atom efficient with H2O and H2 gas as the only byproducts. The protocol is extended to gram-scale reaction and for functionalization of complex vitamin E and cholesterol derivatives.
Iron-Catalyzed C-C Single-Bond Cleavage of Alcohols
Liu, Wei,Wu, Qiang,Wang, Miao,Huang, Yahao,Hu, Peng
supporting information, p. 8413 - 8418 (2021/11/01)
An iron-catalyzed deconstruction/hydrogenation reaction of alcohols through C-C bond cleavage is developed through photocatalysis, to produce ketones or aldehydes as the products. Tertiary, secondary, and primary alcohols bearing a wide range of substituents are suitable substrates. Complex natural alcohols can also perform the transformation selectively. A investigation of the mechanism reveals a procedure that involves chlorine radical improved O-H homolysis, with the assistance of 2,4,6-collidine.
Method for preparing aldehyde/ketone by breaking C-C key
-
Paragraph 0050-0064; 0123-0143, (2021/11/19)
The invention discloses a method for preparing aldehyde/ketone by breaking C-C bonds, and the method comprises the following steps of anaerobic condition. In an organic solvent system, an alcohol is used as a reaction raw material, and the C-C bond is selectively broken under the common action of an iron catalyst, an organic base and an additive to obtain aldehyde/ketone. The method is low in cost, easy to obtain, wide in substrate range, simple and product in post-treatment and high in purity, a new synthetic route and a method are developed for an aldehyde ketone compound, and the method has good application potential and research value.
Combined Theoretical and Experimental Studies Unravel Multiple Pathways to Convergent Asymmetric Hydrogenation of Enamides
Yang, Jianping,Massaro, Luca,Krajangsri, Suppachai,Singh, Thishana,Su, Hao,Silvi, Emanuele,Ponra, Sudipta,Eriksson, Lars,Ahlquist, M?rten S. G.,Andersson, Pher G.
supporting information, p. 21594 - 21603 (2021/12/27)
We present a highly efficient convergent asymmetric hydrogenation of E/Z mixtures of enamides catalyzed by N,P-iridium complexes supported by mechanistic studies. It was found that reduction of the olefinic isomers (E and Z geometries) produces chiral amides with the same absolute configuration (enantioconvergent hydrogenation). This allowed the hydrogenation of a wide range of E/Z mixtures of trisubstituted enamides with excellent enantioselectivity (up to 99% ee). A detailed mechanistic study using deuterium labeling and kinetic experiments revealed two different pathways for the observed enantioconvergence. For α-aryl enamides, fast isomerization of the double bond takes place, and the overall process results in kinetic resolution of the two isomers. For α-alkyl enamides, no double bond isomerization is detected, and competition experiments suggested that substrate chelation is responsible for the enantioconvergent stereochemical outcome. DFT calculations were performed to predict the correct absolute configuration of the products and strengthen the proposed mechanism of the iridium-catalyzed isomerization pathway.
Direct conversion of secondary propargyl alcohols into 1,3-di-arylpropanoneviaDBU promoted redox isomerization and palladium assisted chemoselective hydrogenation in a single pot operation
Bera, Mrinal K.,Chandra, Shubhadeep,De, Rimpa,Savarimuthu, S. Antony
, p. 17871 - 17877 (2021/10/12)
Palladium(ii)acetate is found to be an efficient catalyst for the single-step conversion of secondary propargyl alcohols to 1,3-diarylpropanone derivatives under mild basic conditions. The reaction is believed to proceedviaredox isomerisation of secondary propargyl alcohols followed by chemoselective reduction of an enone double bond with formic acid as an adequate hydrogen donor. A large number of 1,3-diarylpropanone derivatives may readily be prepared from a milligram to a multigram scale.