945-23-3Relevant articles and documents
Design and synthesis of diphenylpyrimidine derivatives (DPPYs) as potential dual EGFR T790M and FAK inhibitors against a diverse range of cancer cell lines
Ai, Min,Wang, Changyuan,Tang, Zeyao,Liu, Kexin,Sun, Xiuli,Ma, Tengyue,Li, Yanxia,Ma, Xiaodong,Li, Lei,Chen, Lixue
, (2019/11/26)
A new class of pyrimidine derivatives were designed and synthesized as potential dual FAK and EGFRT790M inhibitors using a fragment-based drug design strategy. This effort led to the identification of the two most active inhibitors, namely 9a and 9f, against both FAK (IC50 = 1.03 and 3.05 nM, respectively) and EGFRT790M (IC50 = 3.89 and 7.13 nM, respectively) kinase activity. Moreover, most of these compounds also exhibited strong antiproliferative activity against the three evaluated FAK-overexpressing pancreatic cancer (PC) cells (AsPC-1, BxPC-3, Panc-1) and two drug-resistant cancer cell lines (breast cancer MCF-7/adr cells and lung cancer H1975 cells) at concentrations lower than 6.936 μM. In addition, 9a was also effective in the in vivo assessment conducted in a FAK-driven human AsPC-1 cell xenograft mouse model. Overall, this study offers a new insight into the treatment of hard to treat cancers.
Scaffold identification of a new class of potent and selective BCRP inhibitors
Marighetti, Federico,Steggemann, Kerstin,Karbaum, Maria,Wiese, Michael
, p. 742 - 751 (2015/04/14)
We recently reported the synthesis and quantitative structure-activity relationships of a new breast cancer resistance protein (BCRP) inhibitor class. In the study presented herein, we investigated the possibility to better define the scaffold of this compound class by removing or modifying the aromatic ring A with various substituents selected on the basis of their electronic and lipophilic properties. The results show that this aromatic ring is important, but not essential, for activity. Many of the selected substituents led to compounds with low activity, but in some cases activity was retained. Among these, a phenolic hydroxy group proved to impart as much potency to the molecule as a hydroxyethyl side chain, initially considered necessary for activity. This derivative is one of the most active compounds in this class, maintaining an inhibitory activity similar to that of the reference compound; it is also selective for BCRP.